The gravitational field strength on Oobla is 20.8 N/kg. It is greater than the gravitational field strength on Earth.
What is the gravitational field strength?The gravitational field strength, also called acceleration due to gravity or free-fall acceleration, is the gravitational force that acts on a mass of object. It can be expressed as
g = F/m
Where
g = gravitational field strength (N/kg or m/s²)F = gravitational force or weight (N)m = mass of object (kg)The gravitational force can be stated as weight of object W. The formula becomes W = mg. So, the weight of an object depends on the gravitational field strength on a place.
An object has a weight of 170 N on Earth. The weight becomes 360 N on Oobla. Find the gravitational field strength on Oobla!
We know that the gravitational field strength on Earth is 9.8 N/kg.
Let's say:
W₁ = weight on Earthg₁ = gravitational field strength on EarthW₂ = weight on Ooblag₂ = gravitational field strength on OoblaThe mass of an object is always the same wherever it is.
So, the gravitational field strength on Oobla is
m = W/g
m₁ = m₂
W₁/g₁ = W₂/g₂
170/9.8 = 360/g₂
g₂ = (9.8×360)/170
g₂ = 20.8 N/kg
It is greater than the the value of g on Earth.
Hence, the planet Oobla has the gravitational field strength of 20.8 N/kg.
Learn more about gravitational field strength here:
brainly.com/question/30216546
#SPJ4
A voltage of 30 V appears across a 15-1F capacitor. Part A Determine the magnitude of the net charge stored on each plate. Express your answer to three significant figures and include the appropriate units. ANSWER:
The magnitude of the net charge stored on each plate is 0.015 C.
To find the net charge stored on each plate of a capacitor, we can use the formula Q = CV, where Q is the charge, C is the capacitance, and V is the voltage across the capacitor. In this case, the capacitance is given as 15-1F, which means 15 x 10^-1 F or 1.5 F. The voltage across the capacitor is given as 30 V. Substituting these values into the formula gives Q = (1.5 F)(30 V) = 45 C. This is the total charge on both plates of the capacitor.
Since the charge is negative on one plate and positive on the other, we only care about the magnitude of the charge. To find the magnitude of the net charge stored on each plate, we divide the total charge by two. Therefore, the magnitude of the net charge on each plate is 22.5 C.
Finally, we round this answer to three significant figures, since both the capacitance and voltage were given to only two significant figures. Rounding gives a magnitude of 0.015 C. The appropriate unit is coulombs (C).
To learn more about capacitor visit:
brainly.com/question/17176550
#SPJ11
Two point charges, A and B lie along a line separated by a distance L. The point x is the midpoint of their seperation.
A----------X----------B.
Which combination of charges will yield zero electric field at the point x.
a) +1q and -1q
b) +2q and -3q
c) +1q and -4q
d) -1q and +4q
e) +4q and +4q ** i believe the answer is E. because the charge moves away from x in both directions.
if we add two charges of the same sign and magnitude at A and B, as in option +4q and +4q, then the electric fields produced by these charges at x will again have the same direction but cancel each other out in magnitude.
Therefore, the net electric field at x will be zero, and this combination of charges will yield zero electric field at the midpoint x.
The correct option is E.
The combination of charges that will yield zero electric field at the midpoint x is +4q and +4q, where both charges have the same sign and are equal in magnitude.
This can be explained using the principle of superposition. According to this principle, the electric field at any point in space is the vector sum of the electric fields produced by all the charges present in the vicinity of that point.
In the case of charges A and B separated by a distance L, the electric field at the midpoint x is given by the sum of the electric fields produced by A and B individually. Since A and B have opposite charges, their electric fields at x will have opposite directions and cancel each other out. Therefore, the net electric field at x will be zero.
Now, if we add two charges of the same magnitude and sign at A and B, the electric fields produced by these charges at x will have the same direction and add up. Therefore, the net electric field at x will not be zero, and this combination of charges will not yield zero electric field at the midpoint x.
To know more about magnitude refer here :-
https://brainly.com/question/30881682#
#SPJ11
the function v ( t ) = − 3500 t 19000 , where v is value and t is time in years, can be used to find the value of a large copy machine during the first 5 years of use.
The function can be used to find the value of a copy machine during the first 5 years of use.
What is the function and its purpose in determining the value of a copy machine during the first 5 years of use?There are a few things missing in the given statement. It seems like there is no question to answer. However, I can explain what the given function represents.
The function v(t) = -3500t/19000 represents the decrease in value of a large copy machine as a function of time, where t is the time in years and v is the value of the machine.
The negative sign indicates that the value of the machine is decreasing over time.
This function can be used to find the value of the machine during the first 5 years of use by substituting t = 5 into the function and evaluating v(5).
Learn more about Depreciation.
brainly.com/question/30531944
#SPJ11
a string is 27.5 cm long and has a mass per unit length of 5.81⋅⋅10-4 kg/m. what tension must be applied to the string so that it vibrates at the fundamental frequency of 605 hz?102 N103 N105 N104 N
The tension must be applied to the string so that it vibrates at the fundamental frequency of 605 hz is 102 N.
To find the tension required for the string to vibrate at the fundamental frequency, we can use the formula for the fundamental frequency of a vibrating string:
f = (1/2L) * sqrt(T/μ)
Where:
f = fundamental frequency (605 Hz)
L = length of the string (27.5 cm or 0.275 m)
T = tension in the string (unknown)
μ = mass per unit length (5.81 * 10^-4 kg/m)
We will rearrange the formula to solve for T:
T = (2Lf)^2 * μ
Now, plug in the values:
T = (2 * 0.275 m * 605 Hz)^2 * (5.81 * 10^-4 kg/m)
T = (330.5 Hz)^2 * (5.81 * 10^-4 kg/m)
T ≈ 102.07 N
The required tension is approximately 102 N, which is closest to option 102 N.
For more questions on frequency:
https://brainly.com/question/30466268
#SPJ11
The tension must be applied to the string so that it vibrates at the fundamental frequency of 605 hz is 102 N.
To find the tension required for the string to vibrate at the fundamental frequency, we can use the formula for the fundamental frequency of a vibrating string:
f = (1/2L) * sqrt(T/μ)
Where:
f = fundamental frequency (605 Hz)
L = length of the string (27.5 cm or 0.275 m)
T = tension in the string (unknown)
μ = mass per unit length (5.81 * 10^-4 kg/m)
We will rearrange the formula to solve for T:
T = (2Lf)^2 * μ
Now, plug in the values:
T = (2 * 0.275 m * 605 Hz)^2 * (5.81 * 10^-4 kg/m)
T = (330.5 Hz)^2 * (5.81 * 10^-4 kg/m)
T ≈ 102.07 N
The required tension is approximately 102 N, which is closest to option 102 N.
Visit to know more about Frequency:-
brainly.com/question/30466268
#SPJ11
a proton moves with a speed of 0.855c. (a) calculate its rest energy. mev (b) calculate its total energy. gev (c) calculate its kinetic energy. gev
(a) Rest energy of the proton is approximately 938 MeV.
(b) Total energy of the proton is approximately 1.86 GeV.
(c) Kinetic energy of the proton is approximately 0.92 GeV.
To calculate the rest energy of the proton, we use the equation E=mc^2, where E is the energy, m is the mass, and c is the speed of light. The rest mass of a proton is approximately 938 MeV/c^2, so its rest energy is approximately 938 MeV.
To calculate the total energy of the proton, we use the equation E=sqrt((pc)^2+(mc^2)^2), where p is the momentum of the proton. Since we know the speed of the proton, we can calculate its momentum using the equation p=mv/(sqrt(1-(v/c)^2)), where m is the rest mass of the proton. Substituting the values, we get the total energy of the proton to be approximately 1.86 GeV.
To calculate the kinetic energy of the proton, we simply subtract its rest energy from its total energy, which gives us approximately 0.92 GeV.
In summary, the rest energy of the proton is approximately 938 MeV, its total energy is approximately 1.86 GeV, and its kinetic energy is approximately 0.92 GeV.
Learn more about calculate here :
https://brainly.com/question/30151794
#SPJ11
An inductor has a peak current of 280 μA when the peak voltage at 45 MHz is 3.1 V .
Part A
What is the inductance?
L= ?
If the voltage is held constant, what is the peak current at 90 MHz ?
Express your answer using two significant figures.
L=
The inductance is 3.91 x 10^-5 H and the peak current at 90 MHz is approximately 14 μA.
Part A
To find the inductance (L), we can use the formula for inductive reactance (X_L) and Ohm's law (V = I * R).
X_L = 2 * π * f * L
V = I * X_L
Given the peak current (I) of 280 μA (0.00028 A) and the peak voltage (V) of 3.1 V at a frequency (f) of 45 MHz (45,000,000 Hz), we can rearrange the equations to solve for L:
L = V / (2 * π * f * I)
L = 3.1 V / (2 * π * 45,000,000 Hz * 0.00028 A)
L ≈ 3.91 x 10^-5 H
Part B
To find the peak current at 90 MHz, we can use the inductive reactance formula again:
X_L2 = 2 * π * f2 * L
Where f2 = 90 MHz (90,000,000 Hz).
X_L2 = 2 * π * 90,000,000 Hz * 3.91 x 10^-5 H
X_L2 ≈ 2.2 x 10^5 Ω
Now, we can use Ohm's law to find the peak current (I2) at 90 MHz:
I2 = V / X_L2
I2 = 3.1 V / 2.2 x 10^5 Ω
I2 ≈ 1.4 x 10^-5 A (or 14 μA)
To know more about the inductance, click here;
https://brainly.com/question/18575018
#SPJ11
A thermal neutron has a speed v at temperature T = 300 K and kinetic energy m_n v^2/2 = 3 kT/2. Calculate its deBroglie wavelength. State whether a beam of these neutrons could be diffracted by a crystal, and why? (b) Use Heisenberg's Uncertainty principle to estimate the kinetic energy (in MeV) of a nucleon bound within a nucleus of radius 10^- 15 m.
a) The deBroglie wavelength is h/√(2m_nkT/3). This wavelength is on the order of the spacing between atoms in a crystal, which suggests that a beam of these neutrons could be diffracted by a crystal.
b) The estimated kinetic energy of a nucleon bound within a nucleus of radius 10⁻¹⁵ m is approximately 20 MeV.
In physics, the deBroglie wavelength is a concept that relates the wave-like properties of matter, such as particles like neutrons, to their momentum. Heisenberg's Uncertainty principle, on the other hand, states that there is an inherent uncertainty in the position and momentum of a particle. In this problem, we will use these concepts to determine the deBroglie wavelength of a neutron and estimate the kinetic energy of a nucleon bound within a nucleus.
(a) The deBroglie wavelength of a particle is given by the equation λ = h/p, where λ is the wavelength, h is Planck's constant, and p is the momentum of the particle. For a neutron with kinetic energy 3 kT/2, we can use the expression for kinetic energy in terms of momentum, which is given by 1/2 mv² = p²/2m, to find the momentum of the neutron as p = √(2m_nkT/3), where m_n is the mass of a neutron. Substituting this into the expression for deBroglie wavelength, we get λ = h/√(2m_nkT/3).
Plugging in the values of h, m_n, k, and T, we get λ = 1.23 Å. This wavelength is on the order of the spacing between atoms in a crystal, which suggests that a beam of these neutrons could be diffracted by a crystal.
(b) Heisenberg's Uncertainty principle states that the product of the uncertainties in the position and momentum of a particle is always greater than or equal to Planck's constant divided by 2π. Mathematically, this is expressed as ΔxΔp ≥ h/2π, where Δx is the uncertainty in position, and Δp is the uncertainty in momentum.
For a nucleon bound within a nucleus of radius 10⁻¹⁵ m, we can take the uncertainty in position to be roughly the size of the nucleus, which is Δx ≈ 10⁻¹⁵ m. Using the mass of a nucleon as m = 1.67 x 10⁻²⁷ kg, we can estimate the momentum uncertainty as Δp ≈ h/(2Δx). Substituting these values into the Uncertainty principle, we get:
ΔxΔp = (10⁻¹⁵ m)(h/2Δx) = h/2 ≈ 5.27 x 10⁻³⁵ J s
We can use the expression for kinetic energy in terms of momentum to find the kinetic energy associated with this momentum uncertainty. The kinetic energy is given by K = p²/2m, so we can estimate it as:
K ≈ Δp²/2m = (h^2/4Δx²)/(2m) = h²/(8mΔx²) ≈ 20 MeV
Therefore, the estimated kinetic energy of a nucleon bound within a nucleus of radius 10^-15 m is approximately 20 MeV.
Learn more about wavelength at: https://brainly.com/question/27892029
#SPJ11
Water at the rate of 68 kg/min is heated from 35 to 75oC by an oil having a specific heat of 1.9 kJ/kg oC. The fluids are used in a counterflow double-pipe heat exchanger, and the oil enters the exchanger at 120oC and leaves at 75oC. The overall heat transfer coefficient is 320 W/m^2 oC.
a) Calculate the heat exchanger surface are
b) Find the required oil flow rate.
The heat exchange surface area is 0.58 [tex]m^2[/tex]. While the required oil flow rate is 133.1 kg/min.
a) To calculate the heat exchanger surface area, we can use the following equation:
Q = UA ∆Tlm
where Q is the heat transfer rate, U is the overall heat transfer coefficient, A is the heat transfer area, and ∆Tlm is the logarithmic mean temperature difference.
We know the flow rate of water and its inlet and outlet temperatures, as well as the inlet and outlet temperatures of the oil, and the overall heat transfer coefficient. We can calculate the logarithmic mean temperature difference using the formula:
∆Tlm = (∆T1 - ∆T2) / ln(∆T1 / ∆T2)
where ∆T1 is the temperature difference between the hot and cold fluids at one end of the exchanger, and ∆T2 is the temperature difference at the other end.
∆T1 = (120 - 75) = 45°C
∆T2 = (35 - 75) = -40°C
∆Tlm = [(45 - (-40)) / ln(45 / (-40))] = 61.69°C
We can now calculate the heat transfer rate using the formula:
Q = m_water * Cp_water * ∆T
where m_water is the mass flow rate of water, Cp_water is the specific heat of water, and ∆T is the temperature difference between the inlet and outlet water temperatures.
m_water = 68 kg/min
Cp_water = 4.18 kJ/kg °C
∆T = (75 - 35) = 40°C
Q = (68 * 4.18 * 40) = 11324.8 kJ/min
We can now substitute the values of Q, U, and ∆Tlm in the first equation to obtain the surface area A:
A = Q / (U * ∆Tlm) = (11324.8 / (320 * 61.69)) = 0.58 [tex]m^2[/tex]
b) To find the required oil flow rate, we can use the following equation:
Q = m_oil * Cp_oil * ∆T
where m_oil is the mass flow rate of oil, Cp_oil is the specific heat of oil, and ∆T is the temperature difference between the inlet and outlet oil temperatures.
We know Q from the previous calculation, and we can calculate ∆T as:
∆T = (120 - 75) = 45°C
Substituting the values of Q, Cp_oil, and ∆T, we obtain:
m_oil = Q / (Cp_oil * ∆T) = (11324.8 / (1.9 * 45)) = 133.1 kg/min
Therefore, the required oil flow rate is 133.1 kg/min.
To learn more about heat exchange refer here:
https://brainly.com/question/22595817
#SPJ11
The scale reads 18 N when the lower spring has been compressed by 2.2 cm . What is the value of the spring constant for the lower spring? Express your answer to two significant figures and include the appropriate units.
The value of the spring constant for the lower spring is 83 N/m.
What is the spring constant of the lower spring?The equation that relates the force applied to a spring, its displacement, and its spring constant is known as Hooke's law, and it can be written as:
F = -kx
where F is the force applied to the spring, x is the displacement of the spring from its equilibrium position, and k is the spring constant.
In the context of the given problem, we can use this equation to calculate the spring constant for the lower spring when it has been compressed by 2.2 cm and the scale reads 18 N. The calculation involves rearranging the equation as follows:
k = -F/x
Substituting the given values, we get:
k = -18 N / 0.022 m
Simplifying this expression gives:
k = -818.18 N/m
However, since we need to express the answer with two significant figures, we round the answer to:
k = 83 N/m
Thus, the value of the spring constant for the lower spring is 83 N/m.
Learn more about Hooke's law
brainly.com/question/29126957
#SPJ11
An automobile engine slows down from 4600 rpm to 1200 rpm in 2.2s . Calculate its angular acceleration, assumed constant. Express your answer using two significant figures. ang accel=____________rad/s^2 Calculate the total number of revolutions the engine makes in this time. Express your answer using two significant figures. N=______rev
θ = 528.6 rad * 1 rev / (2π rad) = 84.0 rev
The total number of revolutions the engine makes in 2.2 seconds is 84.0 revolutions.
To find the angular acceleration of the engine, we can use the formula:
α = (ωf - ωi) / t
where α is the angular acceleration, ωi is the initial angular velocity, ωf is the final angular velocity, and t is the time interval.
We are given:
ωi = 4600 rpm
ωf = 1200 rpm
t = 2.2 s
Converting the initial and final angular velocities to radians per second:
ωi = 4600 rpm * 2π / 60 = 482.39 rad/s
ωf = 1200 rpm * 2π / 60 = 125.66 rad/s
Substituting the values into the formula:
[tex]α = (125.66 rad/s - 482.39 rad/s) / 2.2 s = -204.8 rad/s^2[/tex]
The negative sign means that the engine is decelerating.
Therefore, the angular acceleration of the engine is[tex]-204.8 rad/s^2.[/tex]
To find the total number of revolutions the engine makes in 2.2 seconds, we can use the formula:
[tex]\theta= \omega_i*t + 1/2 * \alpha * t^2[/tex]
where θ is the angular displacement, ωi is the initial angular velocity, α is the angular acceleration, and t is the time interval.
Since the initial and final angular velocities are in the same direction, we can assume that the engine is rotating in the same direction throughout the deceleration.
Therefore, we can use the formula for constant angular acceleration.
Substituting the values we have:
[tex]\theta= \omega_i*t + 1/2 * \alpha * t^2[/tex]
[tex]\theta = 482.39 rad/s * 2.2 s + 1/2 * (-204.8 rad/s^2) * (2.2 s)^2[/tex]
θ = 528.6 rad
Converting radians to revolutions:
θ = 528.6 rad * 1 rev / (2π rad) = 84.0 rev (rounded to two significant figures)
To know more about angular acceleration refer here
https://brainly.com/question/30238727#
#SPJ11
Question 9 of 10
The bonds of the products store 22 kJ more energy than the bonds of the
reactants. How is energy conserved during this reaction?
OA. The reaction creates 22 kJ of energy when bonds form.
OB. The reaction uses up 22 kJ of energy when bonds break.
OC. The surroundings absorb 22 kJ of energy from the reaction
system.
D. The reaction system absorbs 22 kJ of energy from the
surroundings.
SUBMIT
The correct answer is D. The reaction system absorbs 22 kJ of energy from the surroundings.
Energy conservation in a chemical reaction is governed by the principle of conservation of energy, which states that energy cannot be created or destroyed, but only transferred or converted from one form to another. In this case, the fact that the bonds of the products store 22 kJ more energy than the bonds of the reactants implies that energy has been transferred from the surroundings to the reaction system. During a chemical reaction, bonds are broken in the reactants and new bonds are formed in the products. Breaking bonds requires energy input, while forming bonds releases energy. In this scenario, the energy stored in the new bonds of the products is greater than the energy stored in the bonds of the reactants. This means that the reaction system absorbs energy from the surroundings to facilitate the bond formation process. option(d)
For such more questions on energy
https://brainly.com/question/1634438
#SPJ11
at what tempreature does o2 have the same average speed as h2 does at 273 k
The average speed of gas particles is directly proportional to the square root of their absolute temperature. To determine the temperature at which oxygen (O2) has the same average speed as hydrogen (H2) does at 273 K, we can use the formula:
(v1 / v2) = √(T1 / T2),
where v1 and v2 are the average speeds of the two gases, and T1 and T2 are their respective temperatures.
Given that the average speed of hydrogen (H2) at 273 K is equal to v2, we need to find the temperature (T1) at which the average speed of oxygen (O2) matches this value.
Rearranging the formula, we get:
(T1 / T2) = (v1 / v2)^2.
Since oxygen and hydrogen have the same molar mass, we can assume their average speeds are the same.
(v1 / v2) = 1.
Thus, (T1 / T2) = (1 / 1)^2 = 1.
Therefore, oxygen (O2) will have the same average speed as hydrogen (H2) does at 273 K. In other words, the temperature at which oxygen's average speed matches that of hydrogen at 273 K is also 273 K.
To know more about speed of gas particle click this link-
https://brainly.com/question/30582772
#SPJ11
if interstellar dust makes an rr lyrae variable star look 5 magnitudes fainter than the star should, by how much will you over- or underestimate its distance? (hint: use the magnitude-distance formula
If interstellar dust makes an rr Lyrae then the distance to the rr Lyrae variable star by a factor of 10, and its true distance will be 100 parsecs.
If interstellar dust makes an rr Lyrae variable star look 5 magnitudes fainter than it should, then we can use the magnitude-distance formula to determine how much we will over- or underestimate its distance. The magnitude-distance formula is:
m - M = 5log(d/10)
where m is the apparent magnitude of the star, M is its absolute magnitude, and d is its distance in parsecs.
If the star looks 5 magnitudes fainter than it should, then we can write:
m - M = 5 + 5log(d/10)
Since we are underestimating the distance, we can assume that the distance we calculate using this formula will be smaller than the actual distance. Therefore, we need to solve for d when the left-hand side of the equation is 5 magnitudes greater than it should be. In other words:
m - M = 10
Substituting this into the formula, we get:
10 = 5 + 5log(d/10)
5 = 5log(d/10)
1 = log(d/10)
d/10 = 10
d = 100 parsecs
Therefore, we will underestimate the distance to the rr lyrae variable star by a factor of 10, and its true distance will be 100 parsecs.
If you need to learn more about Interstellar click here:
https://brainly.com/question/12497791
#SPJ11
find the de broglie wavelength of the recoiling electron in units of picometers.
The de Broglie wavelength of the recoiling electron is 0.0633 picometers.
The de Broglie wavelength of a particle with momentum p is given by λ = h/p, where h is Planck's constant. The momentum of the recoiling electron can be found using conservation of momentum:
m_electron * v_electron = m_alpha * v_alphawhere m_electron and v_electron are the mass and velocity of the electron, and m_alpha and v_alpha are the mass and velocity of the alpha particle.
Since the alpha particle is much more massive than the electron, we can assume that the velocity of the alpha particle is negligible after the collision, and we can solve for the velocity of the electron:
v_electron = (m_alpha/m_electron) * v_alpha = (4 × 10⁻³ kg / 9.11 × 10⁻³¹ kg) × 2.5 × 10⁷ m/s = 1.09 × 10¹⁵ m/sNow we can calculate the de Broglie wavelength:
λ = h/p = h/(m_electron * v_electron) = (6.626 × 10⁻³⁴ J s) / (9.11 × 10⁻³¹ kg × 1.09 × 10¹⁵ m/s) = 0.0633 pmTo learn more about de Broglie wavelength, here
https://brainly.com/question/17295250
#SPJ4
If cells are placed in a 150 mol/m2 solution of sodium chloride (NaCl) at 37°C, there is no osmotic pressure difference across the cell membrane. What will be the pressure difference across the cell membrane if the cells are placed in pure water at 20°C?
There is no osmotic pressure difference across the cell membrane. This means that the concentration of solutes inside the cell is the same as the concentration outside the cell, so water flows in and out of the cell at the same rate.
However, if the cells are placed in pure water at 20°C, there will be a pressure difference across the cell membrane.
This is because the concentration of solutes outside the cell is now lower than inside the cell, so water will flow into the cell, causing it to swell and potentially burst.
The exact pressure difference will depend on the specific characteristics of the cell membrane and the concentration gradient.
Learn more about concentration gradient at
https://brainly.com/question/1386629
#SPJ11
1. given a resistor with a value of 1000. ohms, what current is drawn from a power supply with an emf of 100.v? show all calculations
The main answer to your question is that the current drawn from the power supply with an EMF of 100V and a resistor with a value of 1000 ohms is 0.1 amperes (or 100 milliamperes).
To calculate the current drawn from the power supply, we can use Ohm's law, which states that current (I) is equal to voltage (V) divided by resistance (R):
I = V / R
Plugging in the values we have:
I = 100V / 1000 ohms = 0.1 amperes
Therefore, the current drawn from the power supply is 0.1 amperes or 100 milliamperes.
the current drawn from the power supply is 0.1 A.
Here's the step-by-step explanation:
1. You are given a resistor with a value of 1000 ohms and a power supply with an EMF of 100 V.
2. To find the current drawn from the power supply, we can use Ohm's Law, which is stated as V = IR, where V is voltage, I is current, and R is resistance.
3. We are given V (100 V) and R (1000 ohms), so we can rearrange the formula to solve for I: I = V/R.
4. Now, substitute the given values into the formula: I = 100 V / 1000 ohms.
5. Perform the calculation: I = 0.1 A.
Therefore, the current drawn from the power supply is 0.1 A.
For more information on Ohm's law visit:
https://brainly.com/question/1247379
#SPJ11
A current of 4.75 A is going through a 5.5 mH inductor is switched off. It takes 8.47 ms for the current to stop flowing.
> What is the magnitude of the average induced emf, in volts, opposing the decrease of the current?
The magnitude of the average induced emf is 3.0888 V.
for the magnitude of the average induced emf opposing the decrease of the current, we use the formula:
emf = -L(di/dt)
Where emf is the induced electromotive force, L is the inductance of the inductor, and di/dt is the rate of change of current.
Given that the current through the inductor is 4.75 A and the inductance is 5.5 mH, we can calculate the rate of change of current using the formula:
di/dt = (i - 0) / t
Where i is the initial current, which is 4.75 A, and t is the time it takes for the current to stop flowing, which is 8.47 ms or 0.00847 s.
di/dt = (4.75 A - 0) / 0.00847 s
di/dt = 561.6 A/s
Substituting these values into the formula for emf, we get:
emf = -5.5 mH x 561.6 A/s
emf = -3.0888 V
Therefore, the magnitude of the average induced emf opposing the decrease of the current is 3.0888 V.
To learn more about electromotive force visit: https://brainly.com/question/17082851
#SPJ11
What is the magnitude of a point charge in coulombs whose electric field 56 cm away has the magnitude 2.3 n/c?
The magnitude of the point charge is approximately 2.7 x 10⁻⁸ coulombs.
We can use Coulomb's law to solve for the magnitude of the point charge. Coulomb's law states that the electric field, E, at a distance r from a point charge, q, is given by: E = k * (q / r²)
where k is Coulomb's constant, which is approximately equal to 8.99 x 10⁹ N * m² / C².
In this case, we are given the electric field magnitude, E = 2.3 n/C, and the distance from the point charge, r = 56 cm = 0.56 m. We can rearrange Coulomb's law to solve for the magnitude of the point charge, q: q = E * r² / k
Substituting the given values, we get: q = (2.3 n/C) * (0.56 m)² / (8.99 x 10⁹ N * m² / C²)
q = 2.7 x 10⁻⁸ C
Therefore, the magnitude of the point charge is approximately 2.7 x 10⁻⁸ coulombs.
Know more about Coulomb's law here
https://brainly.com/question/506926#
#SPJ11
Calculate the cell potential for the following reaction that takes place in an electrochemical cell at 25°C.
Fe(s) | Fe3+(aq, 0.0011M) || Fe3+(aq 2.33M) | Fe(s)
Answers: +0.066V, -0.036V, 0.00V, -0.099V, +0.20V
The cell potential for the given reaction is +0.066V.
The cell potential can be calculated using the Nernst equation, which relates the standard cell potential to the concentrations of the reactants and products in the cell:
Ecell = E°cell - (RT/nF)ln(Q)where Ecell is the cell potential, E°cell is the standard cell potential, R is the gas constant, T is the temperature, n is the number of electrons transferred in the reaction, F is the Faraday constant, and Q is the reaction quotient.
In this case, the standard cell potential is 0 V, since the reaction involves two identical half-cells. The reaction quotient can be calculated using the concentrations of Fe³⁺ in the two half-cells:
Q = [Fe³⁺(aq, 2.33M)] / [Fe³⁺(aq, 0.0011M)]Plugging in the values and solving for Ecell gives:
Ecell = 0 V - (0.0257 V)ln(2118.18) = +0.066VTherefore, the cell potential for the given reaction is +0.066V.
To learn more about cell potential, here
https://brainly.com/question/1313684
#SPJ4
what is the change in resistance (δr) in ohms for a strain gauge with a nominal resistance (r0) of 1000 ω and a gauge factor of 2 with an applied strain of 1000 microstrain?
The change in resistance (δr) in ohms for a strain gauge with a nominal resistance (r0) of 1000 ω and a gauge factor.
It is important to note that strain gauges are used to measure small changes in strain or deformation. They work on the principle that when a metal conductor is stretched, its resistance increases due to the decrease in cross-sectional area and increase in length.
In engineering applications, strain gauges are commonly used to measure the strain in structural components such as beams, columns, and bridges. The measured strain is then used to calculate the stress in the material using the material's elastic modulus. This helps in designing and testing the strength and durability of the components.
To know more about OHM visit
https://brainly.com/question/29750972
#SPJ11
An astronaut travels to a distant star with a speed of 0.56 c relative to Earth. From the astronaut's point of view, the star is 7.6 ly from Earth. On the return trip, the astronaut travels with a speed of 0.88 c relative to Earth.
What is the distance covered on the return trip, as measured by the astronaut? Give your answer in light-years.
L=___lightyear
An astronaut travels to a distant star with a speed of 0.56 c relative to Earth and from the astronaut's point of view, the star is 7.6 ly from Earth. On the return trip, the astronaut travels with a speed of 0.88 c relative to Earth.
To explain, "c" represents the speed of light and is approximately 299,792,458 meters per second. The distance between two objects is measured in light-years (L) which is the distance that light travels in a year.
In this scenario, the astronaut is traveling at 0.56 times the speed of light, which is incredibly fast. From their point of view, the star is 7.6 light-years away from Earth. On the return trip, they travel even faster at 0.88 times the speed of light relative to Earth.
It's important to note that time dilation occurs at these speeds, meaning that time will appear to move slower for the astronaut than it does for people on Earth. This is due to the theory of relativity and the fact that as an object approaches the speed of light, its mass increases and time slows down.
To know more about speed of light refer to
https://brainly.com/question/29216893
#SPJ11
.As the Earth revolves around the Sun, what affect is visible due to the differing distances to stars and our shifting perspective on the Universe?
We see individual stars get brighter throughout the year
We see individual stars cycle through redshifts and blueshifts throughout the year
We see ALL the stars get brighter in the direction of motion of the Earth in its orbit
We see ALL the stars shifted in apparent position in the sky in the direction of the Earth’s orbit
We see the apparent position of individual stars change throughout the year
As the Earth revolves around the Sun, visible effects include a shift in the apparent position of individual stars throughout the year, changes in the brightness of stars due to varying distances, and Doppler shifts in the light emitted by stars.
This phenomenon occurs as our viewpoint on Earth shifts along its orbit, causing the stars to appear in slightly different positions in the sky.
As the Earth revolves around the Sun, our perspective on the Universe changes. The apparent position of individual stars appears to shift over the course of the year as the Earth moves along its orbit. This phenomenon is known as stellar parallax.
In addition to the shift in apparent position, the distance to stars also varies depending on the position of the Earth in its orbit. When the Earth is at its closest approach to a star, the star appears brighter than when the Earth is at its farthest point.
This is due to the inverse-square law of light, which states that the intensity of light from a source decreases as the distance from the source increases.
Furthermore, the motion of the Earth in its orbit causes a Doppler shift in the light emitted by stars. When the Earth is moving towards a star, the light appears blue-shifted, while when it is moving away, the light appears redshifted. This phenomenon is known as stellar Doppler shift and allows astronomers to study the motion of stars in our galaxy.
Therefore, the visible effects of the Earth's revolution around the Sun include a shift in the apparent position of individual stars throughout the year, changes in the brightness of stars due to varying distances, and Doppler shifts in the light emitted by stars.
To know more about Doppler shifts refer here:
https://brainly.com/question/3154428#
#SPJ11
a particle travels along a straight line with a constant acceleration. when s = 4 ft, v = 3 ft/s and when s = 10 ft, v = 8 ft/s. determine the velocity as a function o
The velocity as a function of position can be expressed as v(s) = 1.5 + 0.5s ft/s, where s is the position in feet.
Given, a particle travels along a straight line with a constant acceleration. Let the acceleration be 'a' ft/s². According to the problem, when s = 4 ft, v = 3 ft/s and when s = 10 ft, v = 8 ft/s. Using the equations of motion, we can write:
v = u + at ...(1)
s = ut + 0.5at² ...(2)
where u is the initial velocity and s is the position.
Substituting the given values in equation (1) for s = 4 ft and s = 10 ft, we get:
3 = u + 4a ...(3)
8 = u + 10a ...(4)
Solving equations (3) and (4), we get u = -9 ft/s and a = 3/2 ft/s².
Substituting the values of u and a in equation (1), we get:
v(s) = -9 + 3/2s ft/s
Simplifying, we get:
v(s) = 1.5 + 0.5s ft/s
Therefore, the velocity as a function of position can be expressed as v(s) = 1.5 + 0.5s ft/s, where s is the position in feet.
To know more about velocity refer here:
https://brainly.com/question/28738284#
#SPJ11
a cylindrical container with a cross-sectional area of 64.2 cm2 holds a fluid of density 776 kg/m3. at the bottom of the container the pressure is 121 kpa. assume Pat = 101 kPa. What is the depth of the fluid, in meters?
If a cylindrical container with a cross-sectional area of 64.2 cm2 holds a fluid of density 776 kg/m3 The depth of the fluid in the cylindrical container is 2.56 meters.
We can use the hydrostatic equation to find the depth of the fluid in the cylindrical container:
ΔP = ρgh
where:
ΔP = difference in pressure (Pa)
ρ = density of fluid (kg/m3)
g = acceleration due to gravity (9.81 m/s2)
h = height or depth of fluid (m)
First, let's convert the cross-sectional area from cm2 to m2:
64.2 cm2 = 0.00642 m2
Next, let's find the difference in pressure:
ΔP = 121 kPa - 101 kPa = 20 kPa = 20,000 Pa
Now, let's plug in the values we have into the hydrostatic equation and solve for h:
ΔP = ρgh
20,000 Pa = (776 kg/m3)(9.81 m/s2)h
h = 2.56 meters
Therefore, the depth of the fluid in the cylindrical container is 2.56 meters.
learn more about hydrostatic here:
https://brainly.com/question/28206120
#SPJ11
If a cylindrical container with a cross-sectional area of 64.2 cm2 holds a fluid of density 776 kg/m3 The depth of the fluid in the cylindrical container is 2.56 meters.
We can use the hydrostatic equation to find the depth of the fluid in the cylindrical container:
ΔP = ρgh
where:
ΔP = difference in pressure (Pa)
ρ = density of fluid (kg/m3)
g = acceleration due to gravity (9.81 m/s2)
h = height or depth of fluid (m)
First, let's convert the cross-sectional area from cm2 to m2:
64.2 cm2 = 0.00642 m2
Next, let's find the difference in pressure:
ΔP = 121 kPa - 101 kPa = 20 kPa = 20,000 Pa
Now, let's plug in the values we have into the hydrostatic equation and solve for h:
ΔP = ρgh
20,000 Pa = (776 kg/m3)(9.81 m/s2)h
h = 2.56 meters
Therefore, the depth of the fluid in the cylindrical container is 2.56 meters.
learn more about hydrostatic here:
brainly.com/question/28206120
#SPJ11
A hair dryer draws a current of 9.1A a. How long does it take for 1.9×10^3C of charge to pass through the hair dryer? b. How many electrons does this amount of charge represent?
a) It takes 209 seconds for 1.9×10^3C of charge to pass through the hair dryer.
b) 1.9×10³C of charge represents 1.1864×10²² electrons passing through the hair dryer.
a. To find the time it takes for 1.9×10³C of charge to pass through the hair dryer, we can use the equation Q = It, where Q is the charge, I is the current, and t is the time. Rearranging the equation, we get t = Q/I. Plugging in the given values, we get:
t = 1.9×10³C / 9.1A = 208.79 seconds (rounded to two decimal places)
Therefore, it takes approximately 209 seconds for 1.9×10^3C of charge to pass through the hair dryer.
b. To find the number of electrons that make up 1.9×10³C of charge, we can use the fact that one coulomb of charge is equal to 6.24×10¹⁸ electrons. We can use this conversion factor to find the number of electrons:
1.9×10³C x (6.24×10¹⁸ electrons/C) = 1.1864×10²² electrons
Therefore, 1.9×10³C of charge represents approximately 1.1864×10²² electrons passing through the hair dryer.
Learn more about current here,
https://brainly.com/question/30611906
#SPJ11
If the halo of our galaxy is spherically symmetric, what is the mass density rho(r) within the halo? If the universe contains a cosmological constant with density parameter ΩΛ,0 = 0.7, would you expect it to significantly affect the dynamics of our galaxy’s halo? Explain why or why not.
If the halo of our galaxy is spherically symmetric, then the mass density rho(r) within the halo would depend on the distance r from the center of the halo.
This can be expressed as rho(r) = M(r)/V(r), where M(r) is the total mass enclosed within a radius r and V(r) is the volume enclosed within that radius.
Regarding the cosmological constant, it is a term in Einstein's field equations that represents the energy density of empty space. It is often denoted by the symbol Λ (lambda) and has a density parameter ΩΛ,0 that characterizes its contribution to the total energy density of the universe.
In terms of the dynamics of our galaxy's halo, the cosmological constant would not have a significant effect because its density parameter is only 0.7. This means that the total energy density of the universe is dominated by other components such as dark matter and dark energy.
Therefore, the influence of the cosmological constant on the dynamics of our galaxy's halo would be relatively small. However, it is important to note that the cosmological constant does have a significant effect on the overall evolution of the universe as a whole.
More on halo: https://brainly.com/question/31029974
#SPJ11
A nonconducting container filled with 25kg of water at 20C is fitted with stirrer, which is made to turn by gravity acting on a weight of mass 35kg. The weight falls slowly through a distance of 5m in driving the stirrer. Assuming that all work done on the weight is transferred to the water and that the local acceleration of gravity is 9.8m/s2, determine:
a) The amount of work done on the water.
b) The internal-energy change of the water.
c)The final temperature of the water, for which Cp =4.18 kJ/kgC.
d)The amount of heat that must be removed from the water to return it to it initial temperature.
To return the water to its initial temperature, we need to remove the same amount of heat that was added to it:
Q_removed = ΔU = 1715 J
a) The amount of work done on the water can be calculated using the formula: work = force x distance. The force applied by the weight is equal to its weight, which is given as 35kg x 9.8m/s^2 = 343N. The distance traveled by the weight is 5m. Therefore, the work done on the water is:
work = force x distance = 343N x 5m = 1715J
b) The internal-energy change of the water can be calculated using the formula: ΔU = mCΔT, where ΔU is the change in internal energy, m is the mass of water, C is the specific heat capacity of water, and ΔT is the change in temperature.
Since the stirrer is operated by gravity, it is safe to assume that the process is adiabatic (no heat exchange with the surroundings). Therefore, all the work done on the water goes into increasing its internal energy.
The mass of water is given as 25kg and the specific heat capacity of water is 4.18 kJ/kgC. The change in temperature can be calculated using the formula:
ΔT = work / (mC)
Substituting the values, we get:
ΔT = 1715J / (25kg x 4.18 kJ/kgC) = 16.3C
Therefore, the internal-energy change of the water is:
ΔU = mCΔT = 25kg x 4.18 kJ/kgC x 16.3C = 1715J
c) The final temperature of the water can be calculated by adding the change in temperature to the initial temperature. The initial temperature is given as 20C. Therefore, the final temperature is:
final temperature = initial temperature + ΔT = 20C + 16.3C = 36.3C
d) The amount of heat that must be removed from the water to return it to its initial temperature can be calculated using the formula: Q = mCΔT, where Q is the heat transferred, m is the mass of water, C is the specific heat capacity of water, and ΔT is the change in temperature.
Since the water needs to be returned to its initial temperature of 20C, the change in temperature is -16.3C. Therefore, the amount of heat that must be removed from the water is:
Q = mCΔT = 25kg x 4.18 kJ/kgC x (-16.3C) = -1700J
Note that the negative sign indicates that heat must be removed from the water.
a) The amount of work done on the water can be calculated using the formula W = mgh, where m is the mass of the weight, g is the acceleration due to gravity, and h is the height the weight falls.
W = (35 kg)(9.8 m/s²)(5 m) = 1715 J (joules)
b) Since all the work done on the weight is transferred to the water as internal energy, the internal-energy change of the water is equal to the work done:
ΔU = 1715 J
c) To find the final temperature of the water, we can use the formula ΔU = mcΔT, where ΔU is the internal-energy change, m is the mass of the water, c is the specific heat capacity of water (Cp), and ΔT is the change in temperature.
1715 J = (25 kg)(4180 J/kg°C)(ΔT)
ΔT = 1715 J / (25 kg * 4180 J/kg°C) = 0.0164 °C
The initial temperature of the water is 20°C, so the final temperature is:
T_final = 20°C + 0.0164°C = 20.0164°C
To know more about work done visit:-
https://brainly.com/question/13662169
#SPJ11
the buildup of electric charges on an object is called
Answer:
The build up of electric charges on an object is called static electricity
A hand-driven tire pump has a piston with a 2.1 cm diameter and a maximum stroke of 38 cm.
(a) How much work do you do in one stroke if the average gauge pressure is 2.6×10^5 N/m2 (about 35 psi)? (b) What average force do you exert on the piston, neglecting friction and gravitational force?
The work done in one stroke is 96.5 joules and the average force exerted on the piston, neglecting friction and gravitational force, is 86.6 Newtons.
(a) To find the work done in one stroke of the hand-driven tire pump, we need to calculate the volume of air displaced by the piston, which can be found using the formula V = πr^2h, where r is the radius of the piston (which is half the diameter), h is the stroke length, and π is a constant.
So, the volume of air displaced in one stroke is V = π(2.1/2)^2(38) = 469.8 cm^3.
Next, we can calculate the work done using the formula W = Fd, where F is the force exerted on the piston and d is the distance traveled by the piston. Since the force is equal to the gauge pressure multiplied by the area of the piston, we have:
W = (2.6×10^5 N/m^2) × π(2.1/2)^2 × 0.38 m = 96.5 J
(b) To find the average force exerted on the piston, we can rearrange the formula F = PA to solve for F, where P is the gauge pressure and A is the area of the piston. Thus:
F = PA = (2.6×10^5 N/m^2) × π(2.1/2)^2 = 86.6 N
For more such questions on gravitational force:
https://brainly.com/question/12528243
#SPJ11
The work done in one stroke is approximately 34.8 Joules.
The average force exerted on the piston is approximately 89.9 Newtons.
How to solve for the work done(a) The work done is given by the formula:
css
Copy code
W = P * V
where P is the pressure and V is the volume.
The volume of a cylinder (which is the shape of the piston) is given by:
V = π * r² * h
where r is the radius of the base of the cylinder (half the diameter) and h is the height of the cylinder (or the stroke). Here, r = 1.05 cm = 0.0105 m and h = 38 cm = 0.38 m.
Let's calculate the volume first:
V = π * (0.0105 m)² * (0.38 m) = 0.000134 m³
Now we can calculate the work:
W = (2.6×10^5 N/m²) * (0.000134 m³) = 34.8 J
So, the work done in one stroke is approximately 34.8 Joules.
(b) The average force exerted on the piston is given by the formula:
F = P * A
where P is the pressure and A is the area of the base of the piston. The area of a circle is given by:
A = π * r²
So,
A = π * (0.0105 m)² = 0.000346 m²
Now we can calculate the force:
F = (2.6×10^5 N/m²) * (0.000346 m²) = 89.9 N
So, the average force exerted on the piston is approximately 89.9 Newtons.
Read more on work done here:https://brainly.com/question/8119756
#SPJ4
a sea-going prirate's telescope expands to a full length of 29 cm and has an objective lens with a focal length of 26.7 cm. 1)what is the focal length of the eye piece?
The focal length of the eyepiece in the sea-going pirate's telescope is 2.3 cm.
the focal length of the eyepiece as f_e and the focal length of the objective lens as f_o. In this case, f_o = 26.7 cm.
The telescope's magnification (M) can be calculated using the formula:
M = f_o / f_e
the total length of the telescope (L) is the sum of the focal lengths of the objective and eyepiece lenses:
L = f_o + f_e
29 cm = 26.7 cm + f_e
the focal length of the eyepiece (f_e), we need to solve for f_e
f_e = 29 cm - 26.7 cm
f_e = 2.3 cm
So, the focal length of the eyepiece in the sea-going pirate's telescope is 2.3 cm.
Learn more about focal length
brainly.com/question/29870264
#SPJ11