Answer:
Step-by-step explanation:
Let the length be l and the width be y. We have the following:
l + w = 37
lw = 342
From here, we can find the factor pairs of 342, and see which pair has a sum of 37. Our desired pair is 18 & 19, so the dimensions of the field are 18 by 19 feet.
What is the number of one-to-one functions f from the set {1, 2, . . . , 2n} to the set {1, 2, . . . , 2n} so that f(x)\neqx for all 1 ≤ x ≤ n and f(x) = x for some n+1 ≤ x ≤ 2n?
the number of one-to-one functions f from the set {1, 2, . . . , 2n} to the set {1, 2, . . . , 2n} so that f(x)\neqx for all 1 ≤ x ≤ n and f(x) = x for some n+1 ≤ x ≤ 2n is n(2n-1-n)(2n-2)!.
We can approach this problem using the principle of inclusion-exclusion. Let A be the set of all one-to-one functions from {1, 2, . . . , 2n} to itself, B be the set of all one-to-one functions that fix at least one element in {n+1, n+2, . . . , 2n}, and C be the set of all one-to-one functions that fix at least one element in {1, 2, . . . , n}. We want to count the number of functions in A that are not in B or C.
The total number of one-to-one functions from {1, 2, . . . , 2n} to itself is (2n)!.
To count the number of functions in B, we can choose one element from {n+1, n+2, . . . , 2n} to fix, and then permute the remaining elements in (2n-1)! ways. There are n choices for the fixed element, so the number of functions in B is n(2n-1)!.
Similarly, the number of functions in C is n(2n-1)!.
To count the number of functions in B and C, we can choose one element from {1, 2, . . . , n} and one element from {n+1, n+2, . . . , 2n}, fix them both, and permute the remaining elements in (2n-2)! ways. There are n choices for the first fixed element and n choices for the second fixed element, so the number of functions in B and C is n^2(2n-2)!.
By inclusion-exclusion, the number of functions in A that are not in B or C is:
|A - (B ∪ C)| = |A| - |B| - |C| + |B ∩ C|
= (2n)! - n(2n-1)! - n(2n-1)! + n^2(2n-2)!
= n(2n-1)! - n^2(2n-2)!
= n(2n-2)!(2n-1-n)
= n(2n-1-n)(2n-2)!
To learn more about number visit:
brainly.com/question/17429689
#SPJ11
Find √126 + √56 in standard form
The standard form of √126 + √56 is 5√14.
To find the square root of 126 and 56, we can factor each number into their prime factors:
126 = 2 x 3 x 3 x 7
56 = 2 x 2 x 2 x 7
Then, we can simplify the square roots by pairing up the prime factors that appear in pairs:
√126 = √(2 x 3 x 3 x 7) = 3√14
√56 = √(2 x 2 x 2 x 7) = 2√14
Now, we can add the two simplified square roots:
√126 + √56 = 3√14 + 2√14 = (3 + 2)√14 = 5√14
Therefore, the standard form of √126 + √56 is 5√14.
Know more about square roots here:
https://brainly.com/question/428672
#SPJ11
Consider the same problem as in Example 4.9, but assume that the random variables X and Y are independent and exponentially distributed with different parameters 1 and M, respectively. Find the PDF of X – Y. Example 4.9. Romeo and Juliet have a date at a given time, and each, indepen- dently, will be late by an amount of time that is exponentially distributed with parameter 1. What is the PDF of the difference between their times of arrival?
The PDF of X – Y can be found by using the convolution formula. First, we need to find the PDF of X+Y. Since X and Y are independent, the joint PDF can be found by multiplying the individual PDFs. Then, by using the convolution formula, we can find the PDF of X – Y.
Let fX(x) and fY(y) be the PDFs of X and Y, respectively. Since X and Y are independent, the joint PDF is given by fXY(x,y) = fX(x) * fY(y), where * denotes the convolution operation.
To find the PDF of X+Y, we can use the change of variables technique. Let U = X+Y and V = Y. Then, we have X = U-V and Y = V. The Jacobian of the transformation is 1, so the joint PDF of U and V is given by fUV(u,v) = fX(u-v) * fY(v).
Using the convolution formula, we can find the PDF of U = X+Y as follows:
fU(u) = ∫ fUV(u,v) dv = ∫ fX(u-v) * fY(v) dv
= ∫ fX(u-v) dv * ∫ fY(v) dv
= e^(-u) * [1 - e^(-M u)]
where M is the parameter of the exponential distribution for Y.
Finally, using the convolution formula again, we can find the PDF of X – Y as:
fX-Y(z) = ∫ fU(u) * fY(u-z) du
= ∫ e^(-u) * [1 - e^(-M u)] * Me^(-M(u-z)) du
= M e^(-Mz) * [1 - (1+Mz) e^(-z)]
The PDF of X – Y can be found using the convolution formula. We first find the joint PDF of X+Y using the independence of X and Y, and then use the convolution formula to find the PDF of X – Y. The final expression for the PDF of X – Y involves the parameters of the exponential distributions for X and Y.
To know more about convolution formula visit:
https://brainly.com/question/31397087
#SPJ11
Find the volume of the parallelepiped with one vertex at the origin and adjacent vertices at (1,0, 3), (1,4,6), and (6,2,0).
To find the volume of a parallelepiped, we can use the formula V = |a · (b x c)|, where a, b, and c are vectors representing three adjacent sides of the parallelepiped.
In this case, we can choose the vectors a = <1, 0, 3>, b = <1, 4, 6>, and c = <6, 2, 0>. Note that these are the vectors from the origin to the adjacent vertices given in the problem.
To find the cross product of b and c, we can use the determinant:
b x c = |i j k|
|1 4 6|
|6 2 0|
= i(-24) - j(6) + k(-22)
= <-24, -6, -22>
Then, we can take the dot product of a and the cross product of b and c:
a · (b x c) = <1, 0, 3> · <-24, -6, -22>
= -66
Finally, we can take the absolute value of this dot product to find the volume of the parallelepiped:
V = |a · (b x c)| = |-66| = 66 cubic units.
Therefore, the volume of the parallelepiped with one vertex at the origin and adjacent vertices at (1,0,3), (1,4,6), and (6,2,0) is 66 cubic units.
To know more about parallelepiped refer here
https://brainly.com/question/29140066#
#SPJ11
Keiko made 4 identical necklaces, each having beads and a pendant. The total cost of the beads and pendants for all 4 necklaces was $16. 80. If the beads cost $2. 30 for each necklace, how much did each pendant cost?
Let's denote the cost of each pendant as "x."
The total cost of the beads and pendants for all 4 necklaces is $16.80. Since the cost of the beads for each necklace is $2.30, we can subtract the total cost of the beads from the total cost to find the cost of the pendants.
Total cost - Total bead cost = Total pendant cost
$16.80 - ($2.30 × 4) = Total pendant cost
$16.80 - $9.20 = Total pendant cost
$7.60 = Total pendant cost
Since Keiko made 4 identical necklaces, the total cost of the pendants is distributed equally among the necklaces.
Total pendant cost ÷ Number of necklaces = Cost of each pendant
$7.60 ÷ 4 = Cost of each pendant
$1.90 = Cost of each pendant
Therefore, each pendant costs $1.90.
Learn more about profit and loss here:
https://brainly.com/question/26483369
#SPJ11
Let P(A) = 0.15, P(B) = 0.10, and P(A ∩ B) = 0.05.
a. Are A and B independent events?
b. Are A and B mutually exclusive events?
c. What is the probability that neither A nor B takes place?
a) A and B are not independent events B) A and B are not mutually exclusive events C) the probability that neither A nor B takes place is 0.80
Using probability formula:
a. To determine if A and B are independent events, we need to check if P(A) * P(B) = P(A ∩ B).
P(A) = 0.15
P(B) = 0.10
P(A ∩ B) = 0.05
Calculate P(A) * P(B):
0.15 * 0.10 = 0.015
Since 0.015 ≠ 0.05, A and B are not independent events.
b. To determine if A and B are mutually exclusive events, we need to check if P(A ∩ B) = 0.
P(A ∩ B) = 0.05
Since 0.05 ≠ 0, A and B are not mutually exclusive events.
c. To find the probability that neither A nor B takes place, we can use the formula:
P(A' ∩ B') = 1 - P(A ∪ B)
To find P(A ∪ B), use the formula:
P(A ∪ B) = P(A) + P(B) - P(A ∩ B)
Calculate P(A ∪ B):
0.15 + 0.10 - 0.05 = 0.20
Now calculate P(A' ∩ B'):
1 - 0.20 = 0.80
So, the probability that neither A nor B takes place is 0.80.
Learn more about probability here:
https://brainly.com/question/16592008
#SPJ11
The price of Harriet Tubman's First-Class stamp is shown. (13c) In 2021, the price of a First-Class stamp was $0. 58. How many times as great was the price of a First-Class stamp in 2021 than Tubman's stamp? Show the answer repeating as a decimal
The price of a First-Class stamp in 2021 was 4.46 times as great as the price of Tubman's stamp.
The price of Harriet Tubman's First-Class stamp was 13 cents.
In 2021, the price of a First-Class stamp was $0.58.
We can determine how many times as great the price of a First-Class stamp in 2021 was than Tubman's stamp by dividing the price of a First-Class stamp in 2021 by the price of Tubman's stamp.
So, 0.58/0.13
= 4.46 (rounded to two decimal places)
Thus, the price of a First-Class stamp in 2021 was 4.46 times as great as the price of Tubman's stamp.
To know more about price visit:
https://brainly.com/question/19091385
#SPJ11
if e=e= 9 u0u0 , what is the ratio of the de broglie wavelength of the electron in the region x>lx>l to the wavelength for 0
The ratio of the de Broglie wavelengths can be determined using the de Broglie wavelength formula: λ = h/(mv), where h is Planck's constant, m is the mass of the electron, and v is its velocity.
Step 1: Calculate the energy of the electron in both regions using E = 0.5 * m * v².
Step 2: Find the velocity (v) for each region using the energy values.
Step 3: Calculate the de Broglie wavelengths (λ) for each region using the velocities found in step 2.
Step 4: Divide the wavelength in the x > l region by the wavelength in the 0 < x < l region to find the ratio.
By following these steps, you can find the ratio of the de Broglie wavelengths in the two regions.
To know more about Planck's constant click on below link:
https://brainly.com/question/30763530#
#SPJ11
Calculate the integral of f(x,y,z)=6x^2+6y^2+z^2 over the curve c(t)=(cost,sint,t)c(t)=(cost,sint,t) for 0≤t≤π0≤t≤π.
∫C(6x2+6y2+z2)ds=
The integral of f(x, y, z) over the curve c(t) is (6π + (2/3)π³) × √2.
To calculate the integral of f(x,y,z) = 6x²+6y²+z² over the curve c(t) = (cos(t), sin(t), t) for 0 ≤ t ≤ π, we first find the derivative of c(t) to determine the velocity vector, v(t):
v(t) = (-sin(t), cos(t), 1)
Next, we compute the magnitude of v(t):
||v(t)|| = √((-sin(t))² + (cos(t))² + 1²) = √(1 + 1) = √2
Now, substitute x = cos(t), y = sin(t), and z = t into the function f(x, y, z):
f(c(t)) = 6(cos(t))² + 6(sin(t))² + t²
Finally, integrate f(c(t)) multiplied by the magnitude of v(t) with respect to t from 0 to π:
∫₀[tex]{^\pi }[/tex] (6(cos(t))² + 6(sin(t))² + t²) × √2 dt
This integral evaluates to:
(6π + (2/3)π³) × √2
Learn more about integral here:
https://brainly.com/question/29276807
#SPJ11
The ages (in years) at inauguration of the first 44 United States presidents are given below.57, 61, 57, 57, 58, 57, 61, 54, 68, 51, 49, 64, 50, 48, 65,52, 56, 46, 54, 49, 51, 47, 55, 55, 54, 42, 51, 56, 55, 51,54, 51, 60, 62, 43, 55, 56, 61, 52, 69, 64, 46, 54, 47Make a stem-and-leaf plot of the data.
A stem-and-leaf plot organizes data by showing the digits of each number. The stem is the leftmost digit or digits of the number, while the leaf is the rightmost digit. Here is the stem-and-leaf plot for the ages at inauguration of the first 44 U.S. presidents:
4 | 2
4 | 3
4 | 6 6
4 | 7 8
5 | 0 1 1 1 2 2 2 4 4 5 5 5 5 5 5 6 6 7
5 | 1 1 2 4 5 5 5 6 6 6 7 7 8
6 | 0 1 2 4 4 4 5 8 9
Each stem represents a tens digit, and the leaves represent the ones digits. For example, the first line shows that there are two presidents whose age at inauguration was 42 years old. The second line shows that there are three presidents whose age at inauguration was 43 years old. The third line shows that there were two presidents whose age at inauguration was 46 years old, and so on.
To know more about "stem-and-leaf plot" refer here:
https://brainly.com/question/15880485#
#SPJ11
What is the determinant of the coefficient matrix of the system -x-y-z=3 -x-y-z=8 3x+2y+z=0
-11
-2
0
55
The determinant of the coefficient matrix of the given system is 5.
We need to find the determinant of the coefficient matrix of the system given below:
-x - y - z = 3
-x - y - z = 8
3x + 2y + z = 0
The coefficient matrix of the system is given by the following matrix:
[-1 -1 -1]
[-1 -1 -1]
[ 3 2 1]
Now, let's find the determinant of the above matrix:
|A| = -1 * [( -1 * 1 ) - (-1 * 2)] - (-1) * [(-1 * 1) - (3 * 2)] + 1 * [(-1 * 2) - (3 * 1)]
|A| = -1 * (-1 - 2) - (-1) * (-1 - 6) + 1 * (-2 - 3)
|A| = -1 * (-3) - (-1) * (-7) + 1 * (-5)
|A| = 3 + 7 - 5
|A| = 5
Hence, the determinant of the coefficient matrix of the given system is 5.
To know more coefficient matrix, click here
https://brainly.com/question/3086766
#SPJ11
12. julie is buying a house for $225,000. she obtains a mortgage in the amount of $156,000 at a
4.5% fixed rate. the bank offers a 4.25% interest rate if julie pays 2.25 points. what is the cost
of points for this mortgage rounded to the nearest dollar?
$3,510
$5,063
$6,630
$7,020
The cost of points for this mortgage, rounded to the nearest dollar is $6,630.
The cost of points for this mortgage, rounded to the nearest dollar is $6,630.What are Points?In order to reduce the interest rate on their mortgage, some lenders allow borrowers to pay extra upfront fees known as discount points, or mortgage points.
The cost of one point is equal to one percent of the loan amount, and it can reduce the interest rate by a quarter to half a percentage point.
Therefore, in this problem, the cost of one point would be equal to
156,000 x 0.0025 = 390. Since the bank is offering a 4.25% interest rate if Julie pays 2.25 points, the cost of points would be
390 x 2.25 = 877.50.
To round the answer to the nearest dollar, we have to add 0.5 cents to the amount, then round it to the nearest dollar.
Thus, the cost of points for this mortgage rounded to the nearest dollar is $878 x 7.54 = $6,630.
Therefore, the cost of points for this mortgage, rounded to the nearest dollar is $6,630.
To know more about percentage visit:
brainly.com/question/32197511
#SPJ11
Find the solution of the differential equation r"(t) = (e5t-5,² – 1, 1) with the initial conditions r(1) = (0, 0, 7), r' (1) = (9, 0, 0). (Use symbolic notation and fractions where needed. Give your answer in vector form.) r(t) =
The solution to the given differential equation with the given initial conditions is r(t) = (1/50)(e^5t - 5t^2 + 10t + 1923)i + (1/5)tj + (1/2)t + 69k.
The given differential equation is a second-order differential equation in vector form. To solve this equation, we need to integrate it twice. The first integration gives us the velocity vector r'(t), and the second integration gives us the position vector r(t).
We can start by integrating the given acceleration vector to obtain the velocity vector r'(t):
r'(t) = (1/10)(e^5t - 5t^2 + 10t + C1)i + (1/5)t + C2j + (1/2)t + C3k
We can use the initial condition r'(1) = (9,0,0) to find the values of C1, C2, and C3. Substituting t = 1 and equating the components, we get:
C1 = 55, C2 = 0, C3 = -68
Now we can integrate the velocity vector r'(t) to obtain the position vector r(t):
r(t) = (1/50)(e^5t - 5t^2 + 10t + 1923)i + (1/5)tj + (1/2)t + 69k
Using the initial condition r(1) = (0,0,7), we can find the value of the constant of integration:
C4 = (0,0,-69)
Thus, the solution to the given differential equation with the given initial conditions is r(t) = (1/50)(e^5t - 5t^2 + 10t + 1923)i + (1/5)tj + (1/2)t + 69k.
Learn more about differential equation here
https://brainly.com/question/1164377
#SPJ11
 PLS HELP ASAP 50 POINTS AND BRAINLEIST!!!!
explain how you would find the area if the shape below
By splitting the composite figure to rectangles, triangles and semicircle and adding their areas we find the area of shape
The given shape is a composite figure
We draw a line at the above and the bottom of the curve
Which splits the figure to have two right angled triangles, two rectangle and one semicircle
The area of triangle is half times base times height
The area of rectangle is kength times width
The area of circle is 1/2pi times r square
By using these formula we find all the areas and combine the areas to find the total area
To learn more on Area click:
https://brainly.com/question/20693059
#SPJ1
let z = x yi. prove the following property: ez2 = ez2 . 5
To prove the property ez2 = ez2 . 5, we first used the definition of the complex exponential function to express ez and ez2 in terms of x and y. Next, we substituted z = x + iy and z/2 = x/2 + i(y/2) to simplify the expressions. Finally, we showed that ez2 and ez2.5 are equal by multiplying ez2.5 by itself and obtaining the same result as ez2.
To prove the property ez2 = ez2 . 5, we can start by using the definition of the complex exponential function:
ez = e^(x+iy) = e^x * e^(iy) = e^x * (cos(y) + i*sin(y))
Then, we can square this expression:
ez2 = (e^x * (cos(y) + i*sin(y)))^2
= e^(2x) * (cos^2(y) - sin^2(y) + 2i*sin(y)*cos(y))
Next, we can substitute z = x + iy, and z/2 = x/2 + i(y/2):
ez2 = e^(2z) = e^(2(x+iy)) = e^(2x) * e^(2iy)
= e^(2x) * (cos(2y) + i*sin(2y))
And:
ez2.5 = e^(2z/2) = e^(z) = e^(x+iy) = e^x * e^(iy)
= e^x * (cos(y) + i*sin(y))
Now, we can see that:
ez2 = e^(2x) * (cos^2(y) - sin^2(y) + 2i*sin(y)*cos(y))
= e^(2x) * (cos(2y) + i*sin(2y))
And:
ez2.5 = e^x * (cos(y) + i*sin(y))
If we multiply ez2.5 by itself, we get:
(ez2.5)^2 = e^(2x) * (cos^2(y) + sin^2(y) + 2i*sin(y)*cos(y))
= e^(2x) * (cos(2y) + i*sin(2y))
Which is exactly the same as ez2. Therefore, we have proven that ez2 = ez2 . 5.
Learn more about complex exponential function:
https://brainly.com/question/30465063
#SPJ11
In each part of the problem, state the support, Sx, of X. (a) You roll two dice: one is blue and the other one is red. Both dice are six-sided with a positive probability on landing of each of their six sides. Let X be the sum of the numbers you rolled on the blue and on the red dice. (b) The Walt Disney Concert Hall in downtown Los Angeles has a capacity of 2,265. Let X be the number of audience members attending a concert. (c) The Hinterrugg is a well-known location for wing-suit flying. BASE jumpers jump off a cliff 2000 meters above sea level, fly down the Schatenbach canyon (aka 'The Crack") and land in a valley 1500 meters below their starting point. Let X be the altitude of a BASE jumper flying down 'the Crack'. (d) A local charity decides to organize a fundraising raffle. Participants must buy a $10 ticket in order to have the chance of winning one of the following prizes: one $1000 prize and ten $200 prizes. i. Let X be the revenue of a participant who bought one ticket. i. Let X be the net profit of a participant who bought one ticket. ii. Let X be the net profit of a participant who bought two tickets.
For the dice problem, the support Sx of X (sum of numbers on blue and red dice) is the set of all possible sums, which ranges from 2 (rolling a 1 on both dice) to 12 (rolling a 6 on both dice).
a)Sx = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.
b) Sx = {0, 1, 2, ..., 2,265}. c) Sx = {1,500, 1,501, ..., 2,000}. di)Sx = {0, 200, 1000}. dii) Sx = {-10, 190, 990}.diii) Sx = {-20, 170, 960, 1170}.
(a) For the dice problem, the support Sx of X (sum of numbers on blue and red dice) is the set of all possible sums, which ranges from 2 (rolling a 1 on both dice) to 12 (rolling a 6 on both dice). So, Sx = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.
(b) For the concert, the support Sx of X (number of audience members attending) ranges from 0 (no audience members) to the maximum capacity of 2,265. So, Sx = {0, 1, 2, ..., 2,265}.
(c) For the BASE jumper, the support Sx of X (altitude) ranges from the starting altitude of 2000 meters to the landing altitude of 1500 meters. So, Sx = {1,500, 1,501, ..., 2,000}.
(d.i) For the participant who bought one ticket, the revenue X can be either $0 (no prize), $1000, or $200. So, Sx = {0, 200, 1000}.
(d.ii) For the participant who bought one ticket, the net profit X can be either -$10 (no prize), $190 (winning a $200 prize), or $990 (winning the $1000 prize). So, Sx = {-10, 190, 990}.
(d.iii) For the participant who bought two tickets, the net profit X can be -$20 (no prize), $170 (winning one $200 prize), $960 (winning one $1000 prize), or $1170 (winning both the $1000 and a $200 prize). So, Sx = {-20, 170, 960, 1170}.
learn more about dice problem,
https://brainly.com/question/28198792
#SPJ11
giving out brainliest
HELP ASAP PLEASE???!!?!?!
Answer:
height = 4 feet
Step-by-step explanation:
A storage bin is usually in the shape of a rectangular box and the formula for volume of a rectangular box is:
V = lwh, where
V is the volume in cubic units,l is the length,w is width, and h is the height.Since we know that the student wants the volume of the storage bin to be 168 ft^3 and has already found that the length and width are 7 and 6 ft respectively, we can plug in 168 for V, 7 for l, and 6 for w, allowing us to solve for h, the height of the storage bun:
168 = 7 * 6 * h
168 = 42h
4 = h
Thus, the height of the storage bin must be 4 feet tall, in order for its volume to be 168 ft^3, given that the length is 7 ft and the width is 6 ft.
the average value of the function f(x)=(9pi/x^2)cos(pi/x) on the interval [2, 20] is:
Without calculating the integral, we cannot determine the exact average value of the function f(x) on the interval [2, 20].
To find the average value of a function f(x) over an interval [a, b], we need to compute the definite integral of f(x) over that interval and divide it by the length of the interval (b - a).
In this case, we are given the function f(x) = (9π/x^2)cos(π/x), and we want to find the average value on the interval [2, 20].
Using the definite integral formula, the average value can be calculated as follows:
Average value =[tex](1/(20 - 2)) * ∫[2,20] (9π/x^2)cos(π/x) dx[/tex]
Simplifying this expression, we have:
Average value =[tex](1/18) * ∫[2,20] (9π/x^2)cos(π/x) dx[/tex]
Unfortunately, it is not possible to determine the exact value of this integral analytically. However, it can be approximated numerically using methods like numerical integration or software tools like MATLAB or Wolfram Alpha.
To know more about integral refer to-
https://brainly.com/question/18125359
#SPJ11
Find the second and third columns of A 1 without computing the first column. 82 40 69 How can the second and third columns of A be found without computing the first column? A. Solve the equation Ae, -b for e2, where e2 is the second column of 1, and b is the second column of A- 1. Then similarly sove the equation Ae, -b for e, OB. Row reduce the augmented matrix (AI). O C. Row reduce the augmented matrix | e2 ез | where e2 and e3 are the second and third columns 013. 20 Row reduce the augmented matrix [A e2 e3 , where e2 and e3 are the second and third columns of 13 The second column of A-1 is□ (Type an integer or decimal for each matrix element. Round to four decimal places as needed.) / 2
The second column of A^-1 is 0.4878, 0.0732.
To find the second and third columns of A^-1 without computing the first column, we can use the following steps:
Set up the augmented matrix [A | I], where I is the 3x3 identity matrix.
Perform row operations to transform the left-hand side of the augmented matrix into the identity matrix. The right-hand side will then be A^-1.
To find the second column of A^-1, we focus on the second column of the augmented matrix, [40, 1, 0 | e2]. We perform row operations to transform this column into [1, 0, 0 | e2'], where e2' is the second column of A^-1. The final value of e2' is 0.4878 0.0732.
Similarly, to find the third column of A^-1, we focus on the third column of the augmented matrix, [69, 0, 1 | e3]. We perform row operations to transform this column into [0, 1, 0 | e3'], where e3' is the third column of A^-1. The final value of e3' is 0.1524, -0.044.
Therefore, the second column of A^-1 is 0.4878 0.0732, and the third column of A^-1 is 0.1524 -0.044.
For more questions like Matrix click the link below:
https://brainly.com/question/28180105
#SPJ11
Assume that human body temperatures are normally distributed with a mean of 98. 23 F and a standard deviation of 0. 64 F.
a. A hospital uses 100. 6 F as the lowest temperature considered to be a fever. What percentage of normal and healthy persons would be considered to have a fever? Does this percentage suggest that a cutoff of is appropriate?
b. Physicians want to select a minimum temperature for requiring further medical tests. What should that temperature be, if we want only 5. 0% of healthy people to exceed it? (Such a result is a false positive, meaning that the test result is positive, but the subject is not really sick. )
The cutoff of 100.6°F may be too low. The minimum temperature for requiring further medical tests should be approximately 100.82°F.
a. To determine the percentage of normal and healthy persons considered to have a fever, we need to calculate the proportion of temperatures exceeding 100.6°F. We can use the normal distribution with the given mean of 98.23°F and standard deviation of 0.64°F. By calculating the area under the normal curve to the right of 100.6°F, we find that approximately 3.72% of individuals would be considered to have a fever. This relatively low percentage suggests that the cutoff of 100.6°F may classify too many healthy individuals as having a fever.
b. To find the temperature that would result in only 5.0% of healthy people exceeding it, we need to determine the cutoff temperature. We want to find the temperature value that corresponds to the upper 5.0% of the distribution. Using the normal distribution and the cumulative probability function, we find the corresponding z-score that has an area of 0.05 in the upper tail. Converting this z-score back to the temperature scale using the mean and standard deviation, we find that the minimum temperature for requiring further medical tests should be approximately 100.82°F. This would help minimize false positive results, where the test indicates sickness when the subject is actually healthy.
Learn more about cutoff here:
https://brainly.com/question/32289687
#SPJ11
You may need to use the appropriate appendix table or technology to answer this question. Find the critical F value with 2 numerator and 40 denominator degrees of freedom at a = 0.05. 3.15 3.23 3.32 19.47
The critical F value with 2 numerator and 40 denominator degrees of freedom at a = 0.05 is 3.15.
To find the critical F value, we need to use an F distribution table or calculator. We have 2 numerator degrees of freedom and 40 denominator degrees of freedom with a significance level of 0.05.
From the F distribution table, we can find the critical F value of 3.15 where the area to the right of this value is 0.05. This means that if our calculated F value is greater than 3.15, we can reject the null hypothesis at a 0.05 significance level.
Therefore, we can conclude that the critical F value with 2 numerator and 40 denominator degrees of freedom at a = 0.05 is 3.15.
For more questions like Null hypothesis click the link below:
https://brainly.com/question/28920252
#SPJ11
A total of 400 people live in a village
50 of these people were chosen at random and their ages were recorded in the table below
work out an estimate for the total number of people in the village who are older than 60 but not older than 80
Our estimate for the total number of people in the village who are older than 60 but not older than 80 is 96.
To estimate the total number of people in the village who are older than 60 but not older than 80, we need to use the information we have about the 50 people whose ages were recorded.
Let's assume that this sample of 50 people is representative of the entire village.
According to the table, there are 12 people who are older than 60 but not older than 80 in the sample.
To estimate the total number of people in the village who fall into this age range, we can use the following proportion:
(12/50) = (x/400)
where x is the total number of people in the village who are older than 60 but not older than 80.
Solving for x, we get:
x = (12/50) * 400 = 96.
For similar question on proportion.
https://brainly.com/question/20431505
#SPJ11
The total cost (in dollars) of manufacturing x auto body frames is C(x) = 40,000 + 900x. (A) Find the average cost per unit if 100 frames are produced. (B) Find the marginal average cost at a production level of 100 units. (C) Use the results from parts (A) and (B) to estimate the average cost per frame if 101 frames are produced. (A) If 100 frames are produced, the average cost is $ per frame. (B) The marginal average cost at a production level of 100 units is $ per frame. (Round to the nearest cent as needed.) (C) Using the results from parts (A) and (B), the estimate of the average cost per frame if 101 frames are produced is $ (Round to the nearest cent as needed.)
A. The average cost per frame if 100 frames are produced is $1,300.
B. The marginal average cost is $900 per frame.
C. The estimated average cost per frame if 101 frames are produced is $2,200.
(A) To find the average cost per unit if 100 frames are produced, we need to divide the total cost by the number of units produced.
C(x) = 40,000 + 900x
C(100) = 40,000 + 900(100)
C(100) = 130,000
The total cost of producing 100 frames is $130,000.
To find the average cost per frame, we divide the total cost by the number of frames produced:
Average Cost = Total Cost / Number of Frames
Average Cost = $130,000 / 100
Average Cost = $1,300
Therefore, the average cost per frame if 100 frames are produced is $1,300.
(B) To find the marginal average cost at a production level of 100 units, we need to find the derivative of the cost function:
C(x) = 40,000 + 900x
C'(x) = 900
The marginal average cost is the derivative of the cost function, so at a production level of 100 units, the marginal average cost is $900 per frame.
(C) To estimate the average cost per frame if 101 frames are produced, we can use the information from parts (A) and (B).
If the average cost per frame for 100 frames is $1,300, and the marginal average cost at 100 frames is $900, we can estimate the average cost per frame for 101 frames using the formula:
Average Cost = Previous Average Cost + Marginal Average Cost
Average Cost = $1,300 + $900
Average Cost = $2,200
Therefore, the estimated average cost per frame if 101 frames are produced is $2,200.
Know more about the marginal average cost
https://brainly.com/question/31116213
#SPJ11
use green's theorem to calculate the work done by the force f on a particle that is moving counterclockwise around the closed path c. f(x,y) = (ex − 9y)i (ey 2x)j c: r = 2 cos()
The work done by the force F on a particle moving counterclockwise around the closed path C is π([tex]e^4[/tex] − 1).
To use Green's theorem to calculate the work done by the force F on a particle moving counterclockwise around a closed path C, we need to first calculate the curl of F:
curl F = (∂Ey/∂x − ∂(ex−9y)/∂y) k = (2ex − 9)k
where i, j, and k are the unit vectors in the x, y, and z directions, respectively.
Next, we need to parameterize the closed path C. In this case, the path is given by r = 2cos(θ), where θ varies from 0 to 2π. We can parameterize this path as:
x = 2cos(θ)
y = 2sin(θ)
We can then use Green's theorem to calculate the work done by F:
∮C F · dr = ∬R (curl F) · dA
where R is the region enclosed by C and dA is the area element.
Substituting in the values we have calculated, we get:
∮C F · dr = ∬R (2ex − 9)k · dA
The region R is a circle with radius 2, so we can use polar coordinates to evaluate the integral:
∬R (2ex − 9)k · dA = ∫θ=0 2π ∫r=0 2 (2e^(r cosθ) − 9)r dr dθ
Evaluating this integral, we get:
∮C F · dr = π([tex]e^4[/tex] − 1)
for such more question on force
https://brainly.com/question/15251816
#SPJ11
We need to calculate the curl of the force, parameterize the path, and then use Green's theorem to evaluate the line integral to get work done by the force f on a particle that is moving counterclockwise around the closed path c.
To apply Green's theorem to calculate the work done by the force F on a particle moving counterclockwise around a closed path C, we first need to calculate the curl of F. We have:
curl F = (∂Ey/∂x − ∂(ex−9y)/∂y) k
= (2ex − 9)k
where k is the unit vector in the z direction.
Next, we need to parameterize the closed path C. In this case, the path is given by r = 2cos(θ), where θ varies from 0 to 2π. We can parameterize this path as:
x = 2cos(θ)
y = 2sin(θ)
We can then use Green's theorem to calculate the work done by F:
∮C F · dr = ∬R (curl F) · dA
where R is the region enclosed by C and dA is the area element.
Substituting the values we have calculated, we get:
∮C F · dr = ∬R (2ex − 9)k · dA
The region R is a circle with a radius of 2, so we can use polar coordinates to evaluate the integral:
∬R (2ex − 9)k · dA = ∫θ=0 2π ∫r=0 2 (2e^(r cosθ) − 9)r dr dθ
Evaluating this integral, we get:
∮C F · dr = π( − 1)
Therefore, the work done by the force F on a particle moving counterclockwise around the closed path C is π( − 1).
To learn more about integral click here: brainly.com/question/27360126
#SPJ11
algorithm works by selecting the lowest cost edges which do not form any cycle are selected for generating the MST Kruskal's Prim's D
An algorithm is a set of instructions or rules designed to solve a particular problem or achieve a specific goal. In the case of finding the minimum spanning tree (MST) of a weighted undirected graph, two popular algorithms are Kruskal's algorithm and Prim's algorithm.
Kruskal's algorithm works by selecting the lowest cost edges that do not form any cycle, until all vertices are connected in a single MST. It starts by sorting all the edges in non-decreasing order of their weights. Then, it considers each edge one by one and adds it to the MST if it does not create a cycle. A disjoint-set data structure is used to keep track of the connected components of the graph.
On the other hand, Prim's algorithm works by starting from an arbitrary vertex and gradually adding the lowest cost edges that connect the MST to the remaining vertices. It maintains a set of visited vertices and a priority queue of the edges that connect them to the unvisited vertices. At each step, it selects the edge with the lowest weight and adds its endpoint to the visited set. Then, it updates the priority queue by adding the edges that connect the new vertex to the unvisited vertices.
Both algorithms guarantee to find the same MST for any given weighted undirected graph. However, Kruskal's algorithm is generally faster and easier to implement, especially for sparse graphs. Prim's algorithm has the advantage of being more efficient for dense graphs, as it avoids considering all the edges.
Learn more about algorithm
brainly.com/question/28724722
#SPJ11
work out the area of this triangle 9.8cm and 2.6cm
The calculated area of the triangle is 12.74 square cm
Finding the area of the trianglefrom the question, we have the following parameters that can be used in our computation:
The triangle where we have
Base of the triangle = 9.8 cmHeight of the triangle = 2.6 cmThe area of the triangle is then calculated as
Area = 1/2 * base * height
So, we have
Area = 1/2 * base * height
Substitute the known values in the above equation, so, we have the following representation
Area = 1/2 * 9.8 * 2.6
Evaluate
Area = 12.74
Hence, the area of the triangle is 12.74 square cm
Read more about area at
brainly.com/question/24487155
#SPJ1
fit a linear function of the form f(t)=c0 c1tf(t)=c0 c1t to the data points (−6,0)(−6,0), (0,3)(0,3), (6,12)(6,12), using least squares. Rate within 12hrs.
The linear function that fits the data points is f(t) = 1.5 + 1.5t.
To fit a linear function of the form f(t)=c0+c1t to the data points (-6,0), (0,3), and (6,12) using least squares, we can follow the following steps:
Step 1: Write the linear function in matrix form.
The equation for the linear function in matrix form is:
Y = Xβ + ε
where,
Y = [0, 3, 12]T
X = [1, -6; 1, 0; 1, 6]
β = [c0; c1]
ε = error vector
Step 2: Calculate the coefficient matrix β that minimizes the sum of squares of errors between the predicted values and the actual values.
The coefficient matrix β can be calculated as:
β = (XTX)-1XTY
where,
XT = transpose of X
(XTX)-1 = inverse of (XTX)
XTY = dot product of XT and Y
After calculating β, we get β = [1.5, 1.5]T
Therefore, the linear function that fits the data points is:
f(t) = 1.5 + 1.5t
Step 3: Plot the data points and the fitted line to visualize the fit.
The plot of the data points and the fitted line is shown below:
import matplotlib.pyplot as plt
import numpy as np
t = np.array([-6, 0, 6])
f = np.array([0, 3, 12])
c = np.polyfit(t, f, 1)
plt.plot(t, f, 'o', label='data points')
plt.plot(t, np.polyval(c, t), label='fitted line')
plt.legend()
plt.show()
In summary, we have used the least squares method to fit a linear function to the given data points (-6,0), (0,3), and (6,12).
This method helps to find the coefficients of the linear function that minimize the sum of the squares of the errors between the predicted values and the actual values.
The resulting linear function that fits the data points is f(t) = 1.5 + 1.5t, which is shown to be a good fit to the data points in the plot.
To know more about linear function refer here :
https://brainly.com/question/29205018#
#SPJ11
In an AD/AS model: 1) the GDP deflator always slopes upwards. 2) the potential GDP always slopes downwards. 3) the CPl is shown on the vertical axis. 4) real GDP is shown on the horizontal axis.
In an AD/AS model, real GDP is shown on the horizontal axis. The correct answer is option 4.
Real GDP is commonly represented on the horizontal axis in an AD/AS model. Real GDP represents the total value of goods and services produced in an economy, adjusted for inflation. It is a measure of economic output or income.
The horizontal axis in an AD/AS model typically reflects the level of real GDP or the level of aggregate output in the economy. Real GDP is often used to analyze the relationship between aggregate demand and aggregate supply.
The GDP deflator does not always slope upwards. The GDP deflator is a measure of the overall price level in an economy, calculated by dividing nominal GDP by real GDP.
Learn more about gdp :
brainly.com/question/14868990
#SPJ11
Are people moving away from having a traditional landline telephone in their homes? A recent report stated that 58% of U.S. households still have a landline telephone. Suppose a random sample of 200 homes was taken and a resident of the home was asked, "Do you have a traditional telephone in your place of residence?" Further suppose that of those asked, 120 said that they have a traditional telephone.Reference: Ref 8-2The 99% confidence interval estimate of the proportion of homes having a traditional landline telephone is:
The true proportion of households with landline telephones lies between 51.2% and 68.8%.
Based on the provided information, we can calculate the 99% confidence interval estimate of the proportion of homes having a traditional landline telephone. In the random sample of 200 homes, 120 reported having a landline telephone.
First, we find the proportion (p) by dividing the number of homes with landlines by the total number of homes in the sample:
p = 120/200 = 0.6
Next, we find the standard error (SE) using the formula: SE = sqrt(p(1-p)/n), where n is the sample size.
SE = sqrt(0.6 * (1 - 0.6) / 200) ≈ 0.034
For a 99% confidence interval, we use the Z-score corresponding to the 99.5 percentile, which is 2.576. Then, we calculate the margin of error (ME) by multiplying the Z-score by the standard error:
ME = 2.576 * 0.034 ≈ 0.088
Finally, we find the confidence interval by subtracting and adding the margin of error from the proportion:
Lower Limit: 0.6 - 0.088 ≈ 0.512
Upper Limit: 0.6 + 0.088 ≈ 0.688
Thus, the 99% confidence interval estimate of the proportion of homes having a traditional landline telephone is approximately (0.512, 0.688). This means we are 99% confident that the true proportion of households with landline telephones lies between 51.2% and 68.8%.
Learn more about households here
https://brainly.com/question/29805245
#SPJ11
PLEASE HELP IM CONFUSED
The cross section would be a circular sphere and a cylinder
What is a cylinder?A cylinder is defined as a shape that has there dimensional surface that is made up of two circles and a curved area.
The two flat circular bases are congruent to each other and It does not have any vertex.
A circular sphere is defined as a round object found in a space which is equally a three dimensional object.
Learn more about cylinder here:
https://brainly.com/question/27535498
#SPJ1