Line a is perpendicular to line b. if the slope of line a is 7 what is the slope of line b

Answers

Answer 1

Answer:

1/7

Step-by-step explanation:

When 2 lines are perpendicular the gradient of one is the reciprocal of the other :

If the gradient of A was 2 the gradient of B would be 1/2.

If the gradient of a is 7 the gradient of b would be 1/7 .

Hope this helped and have a good day


Related Questions

Can you guys help me!!!!!!

Answers

The area covered in tiles is given as follows:

423.3 ft².

How to obtain the area covered in tiles?

The dimensions of the rectangular region of the pool are given as follows:

20 ft and 30 ft.

Hence the entire area is given as follows:

20 x 30 = 600 ft².

(formula for the area of triangle).

The radius of the pool is given as follows:

r = 7.5 ft.

(as the radius is half the diameter).

Hence the area of the pool is given as follows:

A = π x 7.5²

A = 176.7 ft².

(formula for the area of circle).

Hence the area that will be covered in tiles is given as follows:

600 - 176.7 = 423.3 ft².

More can be learned about the area of a figure at https://brainly.com/question/32513467

#SPJ1

A vegetable patch has marrows and parsnips planted in it. The ratio of marrows to parsnips is 5: 4. There are 360 vegetables in total. More marrows are planted so that the total number of marrows increases by 10%. What is the new ratio of marrows to parsnips in the vegetable patch? Give your answer in its simplest form.​

Answers

The new ratio of marrows to parsnips in the vegetable patch is: 11:8

How to solve ratio word problems?

We are told that the ratio of marrows to parsnips is 5: 4.

Thus, if there are 360 vegetables in total, then we can say that:

Number of marrows = (5/9) * 360

= 200 marrows

Number of Parsnips = (4/9) * 360

= 160 Parsnips

Now, we are told that the total number of marrows increases by 10%. Thus:

New total of Marrows = 200 * 1.1 = 220 marrows

Total number of vegetables = 220 + 160 = 380

Ratio of marrows = 220/380 = 11/19

Ratio of parsnips = 160/380 = 8/19

Read more about Ratio Word Problems at: https://brainly.com/question/1781657

#SPJ1

The mean age of bus drivers in Chicago is greater than 51.2 years. If a hypothesis test is performed, how should you interpret a decision that fails to reject the null hypothesis?
A) There is not sufficient evidence to reject the claim μ > 51.2.
B) There is sufficient evidence to support the claim μ > 51.2.
C) There is sufficient evidence to reject the claim μ > 51.2.
D) There is not sufficient evidence to support the claim μ > 51.2.

Answers

Therefore, the correct interpretation of a decision that fails to reject the null hypothesis is option A) "There is not sufficient evidence to reject the claim μ ≤ 51.2."

What does the hypothesis mean?

This means that the null hypothesis cannot be rejected at the chosen level of significance (e.g. α = 0.05), and that the data do not provide enough evidence to support the claim that the mean age of bus drivers in Chicago is greater than 51.2 years.

It does not mean that there is sufficient evidence to support the null hypothesis, as this is not something that can be proven conclusively through hypothesis testing.

Read more on Hypothesis here:https://brainly.com/question/606806

#SPJ1

How can performing discrete trials be demonstrated on the initial competency assessment?

Answers

Performing discrete trials is a teaching technique used in behavior analysis to teach new skills or behaviors.

It involves breaking down a complex task or behavior into smaller, more manageable steps and teaching each step through repeated trials. Each trial consists of a discriminative stimulus, a response by the learner, and a consequence (either positive reinforcement or correction) based on the accuracy of the response.

To demonstrate performing discrete trials on an initial competency assessment, the assessor would typically design a task or behavior to be learned and break it down into smaller steps. They would then present the first discriminative stimulus and prompt the learner to respond. Based on the accuracy of the response, the assessor would provide either positive reinforcement or correction.

The assessor would then repeat the process with the next discriminative stimulus and continue until all steps of the task or behavior have been completed. The number of trials required for the learner to achieve competency would depend on the complexity of the task or behavior and the learner's individual learning pace.

By demonstrating performing discrete trials on an initial competency assessment, the assessor can assess the learner's ability to learn new skills or behaviors using this technique and determine if additional training or support is needed. It also provides a standardized and objective way to measure learning outcomes and track progress over time.

To learn more about assessor visit:

brainly.com/question/29286031

#SPJ11

y'' 4y' 4y = 25cos(t) 25sin(t); initial values y(0) = 1, y’(0) =1. plot y vs t and y’ vs t on the same plot.

Answers

The solution to the differential equation y'' + 4y' + 4y = 25cos(t) + 25sin(t), with initial values y(0) = 1 and y'(0) = 1, is [tex]y(t) = e^(^-^2^t^) * (1 + 2t) + 25/10 * sin(t) + 15/10 * cos(t).[/tex]

How we get the solution of differential equation?

To solve the given second-order linear homogeneous differential equation, we first find the complementary solution by solving the characteristic equation. The characteristic equation for the given differential equation is r² + 4r + 4 = 0. Solving this equation gives us a repeated root of -2.

The complementary solution is then obtained as [tex]y_c(t) = (c1 + c2t) * e^(^-^2^t^)[/tex], where c1 and c2 are arbitrary constants.

To find a particular solution, we assume a solution of the form y_p(t) = A * sin(t) + B * cos(t), where A and B are constants to be determined. We substitute this assumed solution into the differential equation and solve for A and B.

By substituting the given initial conditions y(0) = 1 and y'(0) = 1 into the general solution, we can solve for the arbitrary constants c1 and c2. This yields c1 = 1 and c2 = 1.

Finally, the complete solution is obtained by adding the complementary and particular solutions, resulting in[tex]y(t) = y_c(t) + y_p(t) = (1 + t) * e^(-2t) + 25/10 * sin(t) + 15/10 * cos(t).[/tex]

This solution satisfies the given differential equation and the initial conditions.

Learn more about Differential equation

brainly.com/question/31492438

#SPJ11

As reported in Runner’s World magazine, the times of the finishers in the New York City 10-km run are normally distributed with mean 61 minutes and standard deviation 9 minutes.a. Determine the percentage of finishers who have times between 55 and 75 minutes.b. Obtain and interpret the 60th percentile for the finishing times.c. Find the middle 40% of the finishing times.

Answers

Answer is the middle 40% of the finishing times is between 56.32 and 65.68 minutes.
a. To find the percentage of finishers who have times between 55 and 75 minutes, we need to calculate the z-scores for each time, using the formula:

z = (x - μ) / σ

where x is the time, μ is the mean, and σ is the standard deviation.

For x = 55, z = (55 - 61) / 9 = -0.67

For x = 75, z = (75 - 61) / 9 = 1.56

Using a standard normal distribution table or calculator, we can find the probability of a z-score between -0.67 and 1.56, which is approximately 0.6745 or 67.45%. Therefore, about 67.45% of finishers have times between 55 and 75 minutes.

b. To obtain the 60th percentile for the finishing times, we need to find the z-score that corresponds to a cumulative probability of 0.60. Using a standard normal distribution table or calculator, we can find this z-score to be approximately 0.25.

Using the formula for z-score again, we can solve for the corresponding time:

z = (x - μ) / σ

0.25 = (x - 61) / 9

x - 61 = 2.25

x = 63.25

Therefore, the 60th percentile for finishing times is 63.25 minutes. This means that 60% of finishers have times less than or equal to 63.25 minutes.

c. To find the middle 40% of the finishing times, we need to find the z-scores that correspond to the 30th and 70th percentiles. Using a standard normal distribution table or calculator, we can find these z-scores to be approximately -0.52 and 0.52, respectively.

Using the formula for z-score again, we can solve for the corresponding times:

z = (x - μ) / σ

-0.52 = (x - 61) / 9

x - 61 = -4.68

x = 56.32

and

z = (x - μ) / σ

0.52 = (x - 61) / 9

x - 61 = 4.68

x = 65.68

Therefore, the middle 40% of the finishing times is between 56.32 and 65.68 minutes.

To know more about percentages:

https://brainly.com/question/24877689

#SPJ11

Select the scenario which is an example of voluntary sampling. Answer 2 Points A library is interested in determining the most popular genre of books read by its readership. The librarian asks every 3rd visitor about their preference. Suppose financial reporters are interested in a company's tax rate throughout the country. They Ogroup the company's subsidiaries by city, select 20 cities, and compile the data from all its subsidiaries in these cities. The music festival gives out a People's Choice Award. To vote a participant just texts their choice to the festival sponsor. To obain feedback on the hotel service, a O random sample of guests were chosen to fill out a questionnaire via email.

Answers

The scenario that is an example of voluntary sampling is the People's Choice Award given out by the music festival.

In this scenario, participants voluntarily choose to text their choice to the festival sponsor, making it a form of voluntary sampling.

Voluntary sampling involves participants self-selecting themselves into a study or survey, as opposed to being selected randomly or through a predetermined method.

This method can result in biased or non-representative samples, as participants may have specific characteristics or biases that differ from the general population.

It is generally not considered a reliable method for obtaining unbiased results.

To know more about voluntary sampling, refer here:

https://brainly.com/question/1413932#

#SPJ11

construct the particular solution to the ordinary differential equation y′′−2y′ y= et t2 1. using convolutions! compute the convolutions explicitly! no credit is different method is used!

Answers

The particular solution is:

y(t) = (t3/3 − t2 + t/3) e−t + (1/3) e−t (t2 + 2t + 2)

To use convolutions to solve the ordinary differential equation y′′ − 2y′ = et t2, we first need to find the impulse response function.

The differential equation corresponding to the impulse response function is y′′ − 2y′ δ(t), where δ(t) is the Dirac delta function. The solution to this equation is y(t) = (1/2)t2 δ(t), which is the impulse response function.

Next, we can find the particular solution by taking the convolution of the impulse response function and the forcing function, which is et t2.The convolution integral is given by:

y(t) = ∫0t (t − τ)2 eττ e(t − τ) dτ

We can simplify this integral by making the substitution u = t − τ, which gives:

y(t) = ∫0t u2 e(t−u) eud(u−t)

Now we can split this integral into two parts:

y(t) = ∫0t u2 e(t−u) du − ∫0t u2 eud(u−t)

Evaluating these integrals, we get:

y(t) = (t3/3 − t2 + t/3) e−t + (1/3) e−t ∫0t u2 eu du.

For such more questions on Convolutions:

https://brainly.com/question/15800126

#SPJ11

The particular solution is y_p(t) = 0.

We can use the method of convolution to find the particular solution to the differential equation y'' - 2y'y = et t^2. First, we need to find the impulse response function of the differential equation, which is the solution to the equation y'' - 2y'y = δ(t), where δ(t) is the Dirac delta function.

To find the impulse response function, we can use the method of undetermined coefficients and assume that the solution has the form y(t) = Ae^t + Be^(-t). Then, we have y'(t) = Ae^t - Be^(-t) and y''(t) = Ae^t + Be^(-t), and we can substitute these expressions into the differential equation to get:

(Ae^t + Be^(-t)) - 2(Ae^t - Be^(-t))(Ae^t - Be^(-t)) = δ(t)

Simplifying this equation, we get:

(Ae^t + Be^(-t)) - 2(Ae^t)^2 + 2B^2 - 2ABe^(2t) = δ(t)

Since the Dirac delta function is zero everywhere except at t = 0, we can evaluate this equation at t = 0 to get:

A + B - 2A^2 + 2B^2 = 1

To solve for A and B, we can use the initial conditions y(0) = 0 and y'(0) = 0, which give us:

A + B = 0

A - B = 0

Solving these equations, we get A = B = 0, which means that the impulse response function is y(t) = 0.

Now, we can use the convolution formula to find the particular solution to the differential equation:

y_p(t) = (et t^2 * 0)(t) = 0

Know more about method of convolution here:

https://brainly.com/question/14314040

#SPJ11

PLS HELP ASAP I WILL GIVE 50 POINTS AND BRAINIEST IM DESPERATE !!!!
A regular pentagon and a regular hexagon are both inscribed in the circle below, Which shape has a bigger area? explain your reasoning.

Answers

The shape that has a bigger area is the regular hexagon.

Which shape has a bigger area?

The shape that has a bigger area is the regular hexagon. A hexagon is a polygon with six sides while a pentagon is a polygon with five sides. The area of a polygon measures the surface of the shape.

The polygon with six sides has a greater surface so it is expected that its area will be bigger than that of the pentagon with fewer sides.

Learn more about regular pentagons here:

https://brainly.com/question/858867

#SPJ1

Assume there are 12 homes in the Quail Creek area and 7 of them have a security system. Three homes are selected at random: a. What is the probability all three of the selected homes have a security system? (Round your answer to 4 decimal places.) Probability b. What is the probability none of the three selected homes has a security system? (Round your answer to 4 decimal places.) Probability c. What is the probability at least one of the selected homes has a security system? (Round your answer to 4 decimal places.) Probability

Answers

We are given that there are 12 homes in the Quail Creek area and 7 of them have a security system. We need to calculate the probability of different scenarios when three homes are selected at random.

a. Probability that all three selected homes have a security system:

We can use the formula for the probability of independent events, which is the product of the probabilities of each event. Since we are selecting three homes at random, the probability of selecting a home with a security system is 7/12. Therefore, the probability that all three homes have a security system is (7/12) * (7/12) * (7/12) = 0.2275 (rounded to 4 decimal places).

b. Probability that none of the three selected homes have a security system:

Again, we can use the formula for the probability of independent events. The probability of selecting a home without a security system is 5/12. Therefore, the probability that none of the three homes have a security system is (5/12) * (5/12) * (5/12) = 0.0772 (rounded to 4 decimal places).

c. Probability that at least one of the selected homes has a security system:

To calculate this probability, we can use the complement rule, which states that the probability of an event happening is equal to 1 minus the probability of the event not happening. So, the probability that at least one of the selected homes has a security system is 1 - the probability that none of the selected homes have a security system. We already calculated the probability of none of the homes having a security system as 0.0772. Therefore, the probability that at least one of the selected homes has a security system is 1 - 0.0772 = 0.9228 (rounded to 4 decimal places).

Learn more about independent event here:

https://brainly.com/question/30905572

#SPJ11

in a correlated t test, if the independent variable has no effect, the sample difference scores are a random sample from a population where the mean difference score (µ d ) equals _________. a. 0 b. 1 c. N d. cannot be determined

Answers

The correct answer is a. 0. the mean difference score (µ d ) equals 0

In a correlated t-test, if the independent variable has no effect, the sample difference scores are expected to be a random sample from a population where the mean difference score (µd) equals 0.

When the independent variable has no effect, it means that there is no systematic difference between the two conditions or time points being compared. In this case, the average difference between the paired observations is expected to be zero, indicating no change or effect. Thus, the mean difference score (µd) is equal to 0.

Therefore, the correct answer is a. 0.

learn more about "Mean":-https://brainly.com/question/1136789

#SPJ11

A(n) __________ should be used when you are communicating unexpected negative news, when you anticipate that you audience will be resistant to your message, or when you need to provide an explanation before your main point makes sense.

Answers

A buffer should be used when you are communicating unexpected negative news, when you anticipate that your audience will be resistant to your message, or when you need to provide an explanation before your main point makes sense.

Understanding Buffer

A buffer is a communication technique used to soften the impact of negative or difficult information and make it more manageable for the recipient. It involves introducing the main message gradually by providing context, background information, or explanations that help the audience understand and accept the message more easily. By using a buffer, you can reduce resistance, prepare the audience for the upcoming information, and increase the likelihood that your message will be received more positively.

Learn more about buffer here:

https://brainly.com/question/16993951

#SPJ4

A group of workers can plant 35 acres in 7 days. What is their rate in acres per day?

Answers

The rate at which the group of workers can plant is 5 acres per day.

We have,

To find the rate at which the group of workers can plant acres per day, we can divide the total number of acres planted (35 acres) by the number of days it took (7 days).

Rate = Total acres planted / Number of days

Rate = 35 acres / 7 days

Simplifying the expression:

Rate = 5 acres/day

Therefore,

The rate at which the group of workers can plant is 5 acres per day.

Learn more about unit rates here:

https://brainly.com/question/11258929

#SPJ1

José bought the items shown and paid $0.53 tax. He gave the cashier a $10 bill. How much change Jose get? Use coins and bills to solve

Answers

To find the amount of change that José received, we need to first find the total cost of the items that he bought. We can then add the tax to that amount and subtract it from the amount that he gave to the cashier ($10) to find the change he received.

So, let's start by adding up the cost of the items that he bought:[tex]3.50 + 2.75 + 4.25 = $10.50[/tex]

Now we add the tax to that amount:[tex]$10.50 + $0.53 = $11.03[/tex]

Now we subtract this amount from the amount that José gave to the cashier:[tex]$10.00 - $11.03 = -$1.03[/tex]

Since José gave the cashier $10 and the total cost of the items plus tax was $11.03, he received $1.03 in change.

We can use coins and bills to represent this change in different ways, but one possible way to do it is:1 dollar bill, 3 quarters, 1 nickel, and 3 pennies.

To know more about taxes, visit:

https://brainly.com/question/12611692

#SPJ11

The amount of change Jose gets is 97 cents

How to determine how much change Jose get?

From the question, we have the following parameters that can be used in our computation:

Amount paid = $10

Tax = 0.53

Items = 3.50, 2.75 and 2.25

using the above as a guide, we have the following:

Change = Amount paid - Tax - Sum of Items

So, we have

Change = 10 - 0.53 - 3.50 - 2.75 - 2.25

Evaluate

Change = 0.97

Hence, the change is 97 cents

Read more about expression at

https://brainly.com/question/31819389

#SPJ4

Question

José bought the items shown and paid $0.53 tax. He gave the cashier a $10 bill. How much change Jose get? Use coins and bills to solve

Cost of Items

$3.50

$2.75

$2.25

Green eggs and ham (8 pts) Find the area of the domain enclosed by the curve with parametric equations x = tsint, y = cost, t= [0,2π]. You can draw the curve first with an online tool such as Desmos.

Answers

The curve with parametric equations x = tsint, y = cost, t= [0,2π] traces out a closed loop. The area of the domain enclosed by the curve is π/2 square units. We can plot this curve using an online tool such as Desmos and see that it resembles an egg-shaped figure.

To find the area of the domain enclosed by the curve, we need to use the formula for finding the area enclosed by a parametric curve:
A = ∫(y*dx/dt)dt, where t is the parameter.
In this case, we have x = tsint and y = cost, so dx/dt = sint + tcost and dy/dt = -sint. Substituting these values into the formula, we get:
A = ∫(cost)(sint + tcost)dt, t= [0,2π]
Evaluating this integral, we get:
A = ∫(sintcost + tcos^2t)dt, t= [0,2π]
A = [(-1/2)cos^2t + (1/2)t + (1/4)sin2t]t= [0,2π]
A = π/2

Learn more about parametric here:

https://brainly.com/question/28537985

#SPJ11

(1 point) the matrix a=⎡⎣⎢16−15−12−67627−27−23⎤⎦⎥ has eigenvalues −5, 1, and 4. find its eigenvectors.

Answers

The eigenvector corresponding to the eigenvalue 4.

How to find the eigenvectors of matrix A?

To find the eigenvectors of matrix A, we need to solve the equation Ax = λx, where λ is the eigenvalue and x is the eigenvector.

For λ = -5:

We need to solve the equation (A + 5I)x = 0, where I is the identity matrix.

(A + 5I) = ⎡⎣⎢21−15−12−11727−27−23⎤⎦⎥

Reducing this matrix to row echelon form, we get:

⎡⎣⎢100−12−37350−27−23⎤⎦⎥

The solution to this system is x1 = 2, x2 = 1, and x3 = 3. Therefore, the eigenvector corresponding to the eigenvalue -5 is:

x = ⎡⎣⎢2 1 3⎤⎦⎥

For λ = 1:

We need to solve the equation (A - I)x = 0.

(A - I) = ⎡⎣⎢51−15−12−67627−27−23⎤⎦⎥

Reducing this matrix to row echelon form, we get:

⎡⎣⎢100−12−37300−3−13⎤⎦⎥

The solution to this system is x1 = 1, x2 = 1, and x3 = 0. Therefore, the eigenvector corresponding to the eigenvalue 1 is:

x = ⎡⎣⎢1 1 0⎤⎦⎥

For λ = 4:

We need to solve the equation (A - 4I)x = 0.

(A - 4I) = ⎡⎣⎢1215−12−67627−27−63⎤⎦⎥

Reducing this matrix to row echelon form, we get:

⎡⎣⎢100−16−15−3830−27−63⎤⎦⎥

The solution to this system is x1 = 3, x2 = 1, and x3 = 1. Therefore, the eigenvector corresponding to the eigenvalue 4 is:

x = ⎡⎣⎢3 1 1⎤⎦⎥

Therefore, the eigenvectors of the matrix A are:

x1 = ⎡⎣⎢2 1 3⎤⎦⎥, x2 = ⎡⎣⎢1 1 0⎤⎦⎥, and x3 = ⎡⎣⎢3 1 1⎤⎦⎥

Learn more about eigenvalue

brainly.com/question/31650198

#SPJ11

The Cauchy stress tensor components at a point P in the deformed body with respect to the coordinate system {x_1, x_2, x_3) are given by [sigma] = [2 5 3 5 1 4 3 4 3] Mpa. Determine the Cauchy stress vector t^(n) at the point P on a plane passing through the point whose normal is n = 3e_1 + e_2 - 2e_3. Find the length of t^(n) and the angle between t^(n) and the vector normal to the plane. Find the normal and shear components of t on t he plane.

Answers

The Cauchy stress vector [tex]t^n[/tex] on the plane passing through point P with a normal vector [tex]n = 3e_1 + e_2 - 2e_3 \: is \: t^n = [3; 12; 1] \: MPa.[/tex]

The angle between [tex]t^n[/tex] and the vector normal to the plane is approximately 1.147 radians or 65.72 degrees.

The normal component of [tex]t^n[/tex] on the plane is approximately 5.08 MPa, and the shear component is [-2.08; 6.92; 1] MPa.

To determine the Cauchy stress vector, denoted as [tex]t^n[/tex], on the plane passing through point P with a normal vector

[tex]n = 3e_1 + e_2 - 2e_3[/tex], we can use the formula:

[tex]t^n = [ \sigma] · n[/tex] where σ is the Cauchy stress tensor and · denotes tensor contraction. Let's calculate [tex]t^n[/tex]

[tex][2 5 3; 5 1 4; 3 4 3] · [3; 1; -2] = [23 + 51 + 3*(-2); 53 + 11 + 4*(-2); 33 + 41 + 3*(-2)] = [3; 12; 1][/tex]

Therefore, the Cauchy stress vector [tex]t^n[/tex] on the plane passing through point P with a normal vector [tex]n = 3e_1 + e_2 - 2e_3 \: is \: t^n = [3; 12; 1] \: MPa.[/tex]

To find the length of [tex]t^n[/tex], we can calculate the magnitude of the stress vector:

[tex]|t^n| = \sqrt((3^2) + (12^2) + (1^2)) = \sqrt(9 + 144 + 1) = \sqrt(154) ≈ 12.42 \: MPa.[/tex]

The length of [tex]t^n[/tex] is approximately 12.42 MPa.

To find the angle between [tex]t^n[/tex] and the vector normal to the plane, we can use the dot product formula:

[tex]cos( \theta) = (t^n · n) / (|t^n| * |n|)[/tex]

The vector normal to the plane is [tex]n = 3e_1 + e_2 - 2e_3[/tex]

So its magnitude is [tex]|n| = \sqrt((3^2) + (1^2) + (-2^2)) = \sqrt (9 + 1 + 4) = \sqrt(14) ≈ 3.74.[/tex]

[tex]cos( \theta) = ([3; 12; 1] · [3; 1; -2]) / (12.42 * 3.74) = (33 + 121 + 1*(-2)) / (12.42 * 3.74) = (9 + 12 - 2) / (12.42 * 3.74) = 19 / (12.42 * 3.74) ≈ 0.404

[/tex]

[tex] \theta = acos(0.404) ≈ 1.147 \: radians \: or ≈ 65.72 \: degrees[/tex]

The angle between [tex]t^n[/tex] and the vector normal to the plane is approximately 1.147 radians or 65.72 degrees.

To find the normal and shear components of t on the plane, we can decompose [tex]t^n[/tex] into its normal and shear components using the following formulas:

[tex]t^n_{normal} = (t^n · n) / |n| = ([3; 12; 1] · [3; 1; -2]) / 3.74 ≈ 19 / 3.74 ≈ 5.08 \: MPa \\ t^n_{shear} = t^n - t^n_{normal} = [3; 12; 1] - [5.08; 5.08; 0] = [-2.08; 6.92; 1] \: MPa[/tex]

The normal component of [tex]t^n[/tex] on the plane is approximately 5.08 MPa, and the shear component is [-2.08; 6.92; 1] MPa.

Learn more about vector here,

https://brainly.com/question/27854247

#SPJ4

calculate the area, in square units, bounded above by x=−9−y−−−−√ 3 and x=−12y 6 and bounded below by the x-axis.

Answers

The area bounded above by the curves x = -9 - √(3y) and x = -12y and below by the x-axis is 24 square units.

What is the area enclosed by the curves x = -9 - √(3y) and x = -12y, with the x-axis as the lower boundary?

The given problem asks us to calculate the area enclosed by two curves. The upper curve is represented by the equation x = -9 - √(3y), while the lower curve is defined by x = -12y. The region we are interested in lies below the x-axis. To find the area, we need to determine the points where the curves intersect. Setting the two equations equal to each other, we get -9 - √(3y) = -12y. By solving this equation, we find y = -1/3 and y = -3. These values represent the y-coordinates of the points of intersection. Next, we integrate the difference between the two curves with respect to y, from y = -3 to y = -1/3. After evaluating the integral, we find that the area enclosed by the curves and the x-axis is 24 square units.

By delving deeper into calculus and practicing with similar exercises, you can enhance your problem-solving skills and gain a stronger grasp of mathematical principles. Keep exploring and practicing to become more proficient in finding areas bounded by curves and tackling a variety of mathematical challenges.

Learn more about Curves

brainly.com/question/29408056

#SPJ11:

find the distance from the point q=(5,−4,−3) to the plane −5x−3y−z=5 .

Answers

The distance between the point q=(5,-4,-3) and the plane −5x−3y−z=5 is 5/√35 units.

To find the distance between a point and a plane, we need to use the formula:

distance =[tex]|ax + by + cz + d| / √(a^2 + b^2 + c^2)[/tex]

where a, b, and c are the coefficients of the variables x, y, and z in the equation of the plane, and d is the constant term.

So, for the given plane −5x−3y−z=5, we have a=-5, b=-3, c=-1, and d=5.

To find the distance from the point q=(5,-4,-3) to this plane, we need to substitute these values into the formula above:

distance =[tex]|(-5)(5) + (-3)(-4) + (-1)(-3) + 5| / √((-5)^2 + (-3)^2 + (-1)^2)[/tex]

distance = |(-25) + 12 + 3 + 5| / √35

distance = 5/√35

Therefore, the distance between the point [tex]q=(5,-4,-3)[/tex] and the plane −5x−3y−z=5 is 5/√35 units.

Learn more about coefficient here:

https://brainly.com/question/13431100

#SPJ11

given that csc(θ)=10√3 and θ is in quadrant i, what is tan(θ)?

Answers

tan(θ) = √2697/899.

We know that csc(θ) = 1/sin(θ), so we can find sin(θ) by taking the reciprocal of csc(θ):

sin(θ) = 1/csc(θ) = 1/(10√3) = √3/30

Since θ is in quadrant I, both sin(θ) and cos(θ) are positive. We can use the Pythagorean identity to find cos(θ):

cos^2(θ) = 1 - sin^2(θ) = 1 - 3/900 = 899/900

cos(θ) = √(899/900)

Now we can find tan(θ) as:

tan(θ) = sin(θ)/cos(θ) = (√3/30)/(√(899/900)) = (√3/30)*(√900/√899) = √3/√899

We can rationalize the denominator by multiplying the numerator and denominator by √899:

tan(θ) = (√3/√899)*(√899/√899) = √2697/899

Therefore, tan(θ) = √2697/899.

Learn more about tan here:

https://brainly.com/question/30594361

#SPJ11

Determine convergence or divergence of the given series. summation^infinity_n=1 n^5 - cos n/n^7 The series converges. The series diverges. Determine convergence or divergence of the given series. summation^infinity_n=1 1/4^n^2 The series converges. The series diverges. Determine convergence or divergence of the given series. summation^infinity_n=1 5^n/6^n - 2n The series converges. The series diverges.

Answers

1. The series converges.

2. The series converges.

3. The series diverges.

How to find convergence or divergence of the series [tex]$\sum_{n=1}^\infty \left(n^5 - \frac{\cos n}{n^7}\right)$[/tex] ?

1. For large enough values of n, we have [tex]$n^5 > \frac{\cos n}{n^7}$[/tex], since [tex]$|\cos n| \leq 1$[/tex]. Therefore, we can compare the series to [tex]\sum_{n=1}^\infty n^5,[/tex] which is a convergent p-series with p=5. By the Direct Comparison Test, our series also converges.

How to find convergence or divergence of the series [tex]$\sum_{n=1}^\infty \frac{1}{4^{n^2}}$[/tex] ?

2. We can write the series as [tex]$\sum_{n=1}^\infty \frac{1}{(4^n)^n}$[/tex], which resembles a geometric series with first term a=1 and common ratio [tex]$r = \frac{1}{4^n}$[/tex]. However, the exponent n in the denominator of the term makes the exponent grow much faster than the base.

Therefore, [tex]$r^n \to 0$[/tex]as[tex]$n \to \infty$[/tex], and the series converges by the Geometric Series Test.

How to find convergence or divergence of the series [tex]$\sum_{n=1}^\infty \frac{5^n}{6^n - 2n}$[/tex] ?

3.  We can compare the series to [tex]\sum_{n=1}^\infty \frac{5^n}{6^n},[/tex] which is a divergent geometric series with a=1 and [tex]$r = \frac{5}{6}$[/tex]. Then, by the Limit Comparison Test, we have:

[tex]$$\lim_{n \to \infty} \frac{\frac{5^n}{6^n-2n}}{\frac{5^n}{6^n}} = \lim_{n \to \infty} \frac{6^n}{6^n-2n} = 1$$[/tex]

Since the limit is a positive constant, and [tex]$\sum_{n=1}^\infty \frac{5^n}{6^n}$[/tex] diverges, our series also diverges.

Learn more about convergence or divergence series

brainly.com/question/15415793

#SPJ11

An experiment consists of 8 independent
trials where the probability of success on
each trial is 3/8. Find the probability of
obtaining the following. Round answers to
the nearest ten-thousandth.
What is the answer for Exactly 5 successes?
a. 0.0304
b. 0.1014
c. 0.6250
d. 0.3819
e. 0.0472
At least 7 successes?
a. 0.0056
b. 0.1313
c. 0.8650
d. 0.2614
e. 0.0311
At most 1 success?
a. 0.8650
b. 0.9944
c. 0.0506
d. 0.7480
e. 0.1350

Answers

The answer for Exactly 5 successes of at most 1 success is 0.8650

We can use the binomial distribution to solve these problems. For a binomial distribution with n trials and probability of success p, the probability of getting exactly k successes is:

P(k) = (n choose k) * [tex]p^k[/tex]* (1-p)(n-k)

where (n choose k) = n! / (k!(n-k)!) is the binomial coefficient.

For the given experiment with n=8 and p=3/8:

a. To find the probability of exactly 5 successes:

P(5) = (8 choose 5) * (3/8)[tex].^5[/tex] * (5/8)[tex].^3[/tex]

= 0.1014 (rounded to four decimal places)

b. To find the probability of at least 7 successes:

P(at least 7) = P(7) + P(8)

= (8 choose 7) * (3/8)[tex].^7[/tex] * (5/8)[tex].^1[/tex] + (8 choose 8) * (3/8)[tex].^8[/tex] * (5/8)[tex].^0[/tex]

= 0.0056 + 0.0000

= 0.0056

c. To find the probability of at most 1 success:

P(at most 1) = P(0) + P(1)

= (8 choose 0) * (3/8)[tex].^0[/tex] * (5/8)[tex].^8[/tex] + (8 choose 1) * (3/8)[tex].^1[/tex] * (5/8)[tex].^7[/tex]

= 0.8650

Therefore, the answers are:

a. 0.1014

b. 0.0056

c. 0.8650

For similar question on successes:

https://brainly.com/question/13015656

#SPJ11

To solve this problem, we will use the binomial probability formula: P(x) = (n choose x) * p^x * (1-p)^(n-x). The answer is e) 0.1350.

where n is the number of trials, x is the number of successes we want to find the probability of, p is the probability of success on each trial, and (n choose x) is the binomial coefficient, which represents the number of ways we can choose x successes out of n trials.

a. To find the probability of exactly 5 successes, we have:

P(5) = (8 choose 5) * (3/8)^5 * (5/8)^3
P(5) = 56 * 0.0105 * 0.2373
P(5) = 0.0304

Therefore, the answer is a) 0.0304.

b. To find the probability of at least 7 successes, we can use the complement rule: P(at least 7) = 1 - P(6 or fewer).

P(6 or fewer) = P(0) + P(1) + P(2) + P(3) + P(4) + P(5) + P(6)
P(6 or fewer) = (8 choose 0) * (3/8)^0 * (5/8)^8 + (8 choose 1) * (3/8)^1 * (5/8)^7 + ... + (8 choose 6) * (3/8)^6 * (5/8)^2
P(6 or fewer) = 0.9897

Therefore, P(at least 7) = 1 - 0.9897 = 0.0103

Therefore, the answer is e) 0.0311.

c. To find the probability of at most 1 success, we can add up the probabilities of getting 0 successes and 1 success:

P(0 or 1) = P(0) + P(1)
P(0 or 1) = (8 choose 0) * (3/8)^0 * (5/8)^8 + (8 choose 1) * (3/8)^1 * (5/8)^7
P(0 or 1) = 0.0506 + 0.0844
P(0 or 1) = 0.1350

Therefore, the answer is e) 0.1350.


In an experiment with 8 independent trials and a probability of success of 3/8 on each trial, the probability of obtaining exactly 5 successes is approximately 0.1014 (option b). The probability of obtaining at least 7 successes is approximately 0.0056 (option a), and the probability of obtaining at most 1 success is approximately 0.1350 (option e).

Learn more about binomial at: brainly.com/question/13870395

#SPJ11

convert the polar equation to rectangular coordinates. (use variables x and y as needed.) r = 2 csc()

Answers

In this conversion, we assume that θ is not equal to 0 or any multiple of π, as csc(θ) is undefined for those values.

In rectangular coordinates, the equation r = 2csc(θ) can be expressed as:

x = 2cos(θ)

y = 2sin(θ)

To convert the polar equation r = 2csc(θ) to rectangular coordinates, we need to express the equation in terms of x and y.

In polar coordinates, r represents the distance from the origin (0,0) to a point (x, y), and θ represents the angle between the positive x-axis and the line segment connecting the origin to the point.

To convert r = 2csc(θ) to rectangular coordinates, we can use the following relationships:

x = r * cos(θ)

y = r * sin(θ)

First, let's express csc(θ) in terms of sin(θ):

csc(θ) = 1 / sin(θ)

Now, substitute r = 2csc(θ) into the equations for x and y:

x = (2csc(θ)) * cos(θ)

y = (2csc(θ)) * sin(θ)

Using the relationship between csc(θ) and sin(θ), we can rewrite the equations as:

x = (2/sin(θ)) * cos(θ)

y = (2/sin(θ)) * sin(θ)

Simplifying further:

x = 2cos(θ)

y = 2sin(θ)

Therefore, in rectangular coordinates, the equation r = 2csc(θ) can be expressed as:

x = 2cos(θ)

y = 2sin(θ)

Note: In this conversion, we assume that θ is not equal to 0 or any multiple of π, as csc(θ) is undefined for those values.

To learn more about polar equation

https://brainly.com/question/27814316

#SPJ11

Correct question- How do you convert the polar equation  r = 8cscθ into rectangular form?

A stock has a beta of 1.14 and an expected return of 10.5 percent. A risk-free asset currently earns 2.4 percent.
a. What is the expected return on a portfolio that is equally invested in the two assets?
b. If a portfolio of the two assets has a beta of .92, what are the portfolio weights?
c. If a portfolio of the two assets has an expected return of 9 percent, what is its beta?
d. If a portfolio of the two assets has a beta of 2.28, what are the portfolio weights? How do you interpret the weights for the two assets in this case? Explain.

Answers

The weight of the risk-free asset is 0.09 and the weight of the stock is 0.91.

The beta of the portfolio is 0.846.

a. The expected return on a portfolio that is equally invested in the two assets can be calculated as follows:

Expected return = (weight of stock x expected return of stock) + (weight of risk-free asset x expected return of risk-free asset)

Let's assume that the weight of both assets is 0.5:

Expected return = (0.5 x 10.5%) + (0.5 x 2.4%)

Expected return = 6.45% + 1.2%

Expected return = 7.65%

b. The portfolio weights can be calculated using the following formula:

Portfolio beta = (weight of stock x stock beta) + (weight of risk-free asset x risk-free beta)

Let's assume that the weight of the risk-free asset is w and the weight of the stock is (1-w). Also, we know that the portfolio beta is 0.92. Then we have:

0.92 = (1-w) x 1.14 + w x 0

0.92 = 1.14 - 1.14w

1.14w = 1.14 - 0.92

w = 0.09

c. The expected return-beta relationship can be represented by the following formula:

Expected return = risk-free rate + beta x (expected market return - risk-free rate)

Let's assume that the expected return of the portfolio is 9%. Then we have:

9% = 2.4% + beta x (10.5% - 2.4%)

6.6% = 7.8% beta

beta = 0.846

d. Similarly to part (b), the portfolio weights can be calculated using the following formula:

Portfolio beta = (weight of stock x stock beta) + (weight of risk-free asset x risk-free beta)

Let's assume that the weight of the risk-free asset is w and the weight of the stock is (1-w). Also, we know that the portfolio beta is 2.28. Then we have:

2.28 = (1-w) x 1.14 + w x 0

2.28 = 1.14 - 1.14w

1.14w = 1.14 - 2.28

w = -1

This is not a valid result since the weight of the risk-free asset cannot be negative. Therefore, there is no solution to this part.

Know more about risk-free asset here:

https://brainly.com/question/29489385

#SPJ11

insomnia and education. is insomnia related to education status? researchers at the universities of memphis, alabama at birmingham, and tennessee investigated this question in the journal of abnormal psychology (feb. 2005). adults living in tennessee were selected to participate in the study, which used a random-digit telephone dialing procedure. two of the many variables measured for each of the 575 study participants were number of years of education and insomnia status (normal sleeper or chronic insomniac). the researchers discovered that the fewer the years of education, the more likely the person was to have chronic insomnia. a. identify the population and sample of interest to the researchers. b. identify the data collection method. are there any potential biases in the method used? c. describe the variables measured in the study as quantitative or qualitative. d. what inference did the researchers make?

Answers

a. The population of interest to the researchers were adults living in Tennessee. The sample of interest were the 575 study participants who were selected using a random-digit telephone dialing procedure.

b. The data collection method was a survey conducted through telephone interviews. The potential biases in the method used could include non-response bias, where individuals who do not have telephones or do not answer calls may be excluded from the study. Additionally, there may be social desirability bias, where individuals may not report their true insomnia status due to social pressures.

c. The variables measured in the study were years of education and insomnia status. Years of education is a quantitative variable, while insomnia status is a qualitative variable.

d. The researchers inferred that there is a relationship between education status and insomnia, where individuals with fewer years of education are more likely to have chronic insomnia. However, it should be noted that correlation does not imply causation and further research would be needed to establish causality.

To  learn  more about variable click here:brainly.com/question/15078630

#SPJ11

Penelope has $131 in her bank account and deposits $51 per month into her account. Henry has $41 and deposits $56 per month into his account.


Enter the number of months it will take for both Penelope and Henry to have the same amount of money in their accounts

Answers

It will take 18 months for both Penelope and Henry to have the same amount of money in their accounts.

Penelope has $131 in her bank account and deposits $51 per month into her account. Henry has $41 and deposits $56 per month into his account. Let us assume that after t months, they both will have the same amount of money in their accounts.

Let's suppose x is the amount of money that they both will have in their accounts after t months. Using the given information, we can write the following two equations:

For Penelope:$131 + 51t = x-----(1)

For Henry:$41 + 56t = x------(2)

By equating equation (1) and (2), we get:$131 + 51t = $41 + 56t => 5t = 90=> t = 18

It will take 18 months for both Penelope and Henry to have the same amount of money in their accounts.

The explanation of the solution to the given problem has been given above.

Know more about deposits here,

https://brainly.com/question/30186258

#SPJ11

in problems 1–14, solve the given initial value problem using the method of laplace transforms. 1. y″ - 2y′ 5y = 0 ;

Answers

The Laplace transform of the given initial value problem is s²Y(s) - 2sY(s) + 5Y(s) = 0.

Take the Laplace transform of the differential equation. Let's denote the Laplace transform of y(t) as Y(s). Using the properties of Laplace transforms and the derivatives property, we have:

L(y''(t)) - 2L(y'(t)) + 5L(y(t)) = s²Y(s) - 2sY(s) + 5Y(s) = 0.

Simplify the equation obtained from the Laplace transform. Rearrange the terms:

s²Y(s) - 2sY(s) + 5Y(s) = 0.

Solve for Y(s). Factor out Y(s) from the equation:

Y(s)(s² - 2s + 5) = 0.

Solve the quadratic equation s² - 2s + 5 = 0 to find the roots. The roots are given by:

s = (2 ± √(-16))/2 = 1 ± 2i.

Write the partial fraction decomposition of Y(s) based on the roots obtained. Since the roots are complex, we have:

Y(s) = A/(s - (1 + 2i)) + B/(s - (1 - 2i)).

Solve for A and B using algebraic manipulation. Multiply both sides of the equation by the denominators and then substitute the roots:

Y(s) = [A/(1 + 2i - 1 - 2i)]/[s - (1 + 2i)] + [B/(1 - 2i - 1 + 2i)]/[s - (1 - 2i)].

Simplify the equation:

Y(s) = A/(4i) * [1/(s - (1 + 2i))] + B/(-4i) * [1/(s - (1 - 2i))].

Apply the inverse Laplace transform to obtain the solution y(t):

y(t) = A/4i * e^((1 + 2i)t) + B/(-4i) * e^((1 - 2i)t).

This is the solution to the given initial value problem using the method of Laplace transforms.

For more questions like Laplace click the link below:

https://brainly.com/question/30759963

#SPJ11

Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of the function. g(s) = 2 s (t - t9)6 dt g'(s) = Use part 1 of the Fundamental Theorem of Calculus to find the derivative of the function. F(x) = x pi 2 + sec(8t) dt [Hint: x pi 2 + sec(8t) dt = - pi x 2 + sec(8t) dt] F(x) = Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of the function. y = 9 tanx 2t + t dt y' = Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of the function. y = 4 5 u3/-3x1 + u2 du y' =

Answers

The derivative of g(s) = [tex]2s(t - t9)6[/tex] dt using Part 1 of the Fundamental Theorem of Calculus is g'(s) = [tex]12s(t - t9)5.[/tex] The derivative of F(x) = x pi 2 + sec(8t) dt using Part 1 of the Fundamental Theorem of Calculus is F'(x) = pi x + sec(8t).

To find the derivative of g(s), we first need to integrate the given function with respect to t. Using the power rule of integration, we get G(t) = (t - t9)7 / 7. Now, using Part 1 of the Fundamental Theorem of Calculus, we can differentiate G(t) with respect to s to get g'(s) = d/ds [G(t)] = d/ds [(t - t9)7 / 7] = (t - t9)6 * d/ds [2s] = 12s(t - t9)5.

To find the derivative of F(x), we first need to integrate the given function with respect to t. Using the power rule of integration and the integral of secant, we get F(x) = - pi x / 2 +[tex]ln|sec(8t) + tan(8t)[/tex]|. Now, using Part 1 of the Fundamental Theorem of Calculus, we can differentiate F(x) with respect to x to get F'(x) = d/dx [F(x)] = d/dx [- pi x / 2 +[tex]ln|sec(8t) + tan(8t)|[/tex]] = pi/2 + d/dx [tex][ln|sec(8t) + tan(8t)|][/tex]= pi/2 + d/dx[tex][ln|sec(8t) + tan(8t)| * dt/dx][/tex] = pi/2 + sec(8t) * dt/dx. Therefore, F'(x) = pi x / 2 + sec(8t).

Learn more about power rule here:

https://brainly.com/question/23418174

#SPJ11

Convert (xy)^9 = 7| to an equation in polar coordinates =r^18 |

Answers

To convert (xy)^9 = 7 to an equation in polar coordinates, we first need to substitute x = r cos θ and y = r sin θ. So, we get (r cos θ × r sin θ)^9 = 7. Simplifying this expression, we get r^18 (sin θ cos θ)^9 = 7. Now, using the double angle formula for sine, sin 2θ = 2 sin θ cos θ, we get (r^18 sin^9 θ cos^9 θ) (sin 2θ/2)^9 = 7. Finally, substituting sin 2θ/2 = √((1-cos θ)/2), we get the equation in polar coordinates r^18 = (7/sin^9 θ cos^9 θ) √((1-cos θ)/2)^9.

To convert an equation from rectangular coordinates to polar coordinates, we need to substitute x = r cos θ and y = r sin θ. Using this substitution, we can convert the equation into an expression in terms of r and θ. In this case, we are given (xy)^9 = 7, which becomes (r cos θ × r sin θ)^9 = 7 after substitution. Simplifying this expression, we get r^18 (sin θ cos θ)^9 = 7.

Next, we use the double angle formula for sine to simplify the expression. The double angle formula for sine is sin 2θ = 2 sin θ cos θ. Using this formula, we can write sin θ cos θ as sin 2θ/2, which simplifies the expression further.

Finally, we substitute sin 2θ/2 = √((1-cos θ)/2) to get the equation in polar coordinates.

To convert an equation from rectangular coordinates to polar coordinates, we need to substitute x = r cos θ and y = r sin θ. After substitution, we simplify the expression using trigonometric identities. In this case, we used the double angle formula for sine to simplify the expression (r cos θ × r sin θ)^9 = 7. We ended up with the equation in polar coordinates r^18 = (7/sin^9 θ cos^9 θ) √((1-cos θ)/2)^9, which can be used to graph the equation in polar coordinates.

To know more about polar coordinates visit:

https://brainly.com/question/31422978

#SPJ11

a) Find the coordinates of the point where y - 4x = 1 crosses the y-axis. b) The diagram shows the graph of y = 2x + c, where c is a constant. Find the value of k. Optional working -3 X (k, 10) X k Ansv +​

Answers

Answer:

a) (0,1)

[tex]\sf b) k = \dfrac{13}{2}[/tex]

Step-by-step explanation:

a) The x co-ordinate where the line (y -4x = 1) crosses the y-axis is zero.

       y - 4*0 = 1

             y = 1

co-ordinates (0,1)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

b) y = 2x + c

Compare with y = mx + c.

⇒ m = 2

Two points from the graph: (k , 10) & (0,-3)

Substitute the value of m and the two points in the below formulae and find the value of k.

        [tex]\sf slope =\dfrac{y_2 -y_1}{x_2-x_1}[/tex]

       [tex]\dfrac{-3-10}{0-k}=2\\\\\dfrac{-13}{-k}=2\\\\\\\dfrac{13}{k}=2\\\\\\Cross \ multiply,\\\\[/tex]

              13 = 2k

              [tex]\sf\boxed{ \bf k =\dfrac{13}{2}}\\\\[/tex]

Other Questions
why accoridnv to sandel is the autonomy objection to enhancement unpersuasive? Name the parent function that has a local maximum at x = ? there aren't any answer choices to pick from :/ which correctly lists the three main ocean zones?deep, neritic, surfaceintertidal, deep, surfaceneritic, intertidal, open ocean Media Networks, Parks and Resorts, Studio Entertainment, and the Consumer Products & Interactive Media business units all possess strong strategic fit opportunities with significant potential for cost savings and skills transfer among the businesses.(Click to select) Yes No Is CsNO2 ionic or covalent Identify of chemical species gets oxidized and which gets reduced in the following overall chemical reaction: 2 Ca(s) + O2(g) 2CaO(s) ____is oxidized, whereas ___is reduced. 3. The Freedman LackedEducation and PoliticalExperience The excessive and unbalance use of pesticides is one of the prominent environmental issue since last few years in Nepal. Mention any three consequences of over use of pesticides in your locality and suggest awareness campaign that you have follow in two points. [3+2] A town of 3200, grows at a rate of 25% every year. Find the size of the city in 10 years. which attacks are most dangerous for using a block cipher in ecb mode Find a formula for the derivative of the function 4x^2-2 using difference quotients: A simple pendulum on earth has a period of 6.0 s. What is the approximate period of this pendulum on the moon where the acceleration due to gravity is roughly 1/6 that of earth? a. 1.0s b. 2.4 s c. 36 s d. 15 se. 6.05s two resistors are wired in series. in another circuit, the same two resistors are wired in parallel. in which circuit is the equivalent resistance greater? Fill in the blank. _______________theories suggest that economic resources, power, and privilege are distributed unequally among people at different stages of the life course. why might a page-level lock be preferred over a field-level lock? An embryo at the 4-cell stage of development is almost twice the size of an embryo at the 2-cell stage of development. Cleavage results in an increase in the number of cells without an increase in size of the embryo. cleavage. Choose an indicator that could be used to determine an endpoint during an acid-base titration for the least acidic proton (pKa2) of Chromic Acid (H2CrO4). Explain why this indicator is appropriate. (Lists of acid base indicators and their relevant properties occur in most general and analytical chemistry text books). Stacey filtered a table on the Product Type field and now wants to filter on the price field instead. What should she do next? Click a filter button and then click Price. Clear the filter from the table Use a Number filter Sort by the Price field In your opinion whom do you think made the correct decision on the two plans to utilize the Chinese booster: the top NASA administrator or the person who sent the plans for the second option to the crew of the Hermes? key question(s) to ask when deciding the appropriate intervention method is(are)