Answer:
pf = 198.8 kg*m/s
θ = 46.8º N of E.
Explanation:
Since total momentum is conserved, and momentum is a vector, the components of the momentum along two axes perpendicular each other must be conserved too.If we call the positive x- axis to the W-E direction, and the positive y-axis to the S-N direction, we can write the following equation for the initial momentum along the x-axis:[tex]p_{ox} = p_{oAx} + p_{oBx} (1)[/tex]
We can do exactly the same for the initial momentum along the y-axis:[tex]p_{oy} = p_{oAy} + p_{oBy} (2)[/tex]
The final momentum along the x-axis, since the collision is inelastic and both objects stick together after the collision, can be written as follows:[tex]p_{fx} = (m_{A} + m_{B} ) * v_{fx} (3)[/tex]
We can repeat the process for the y-axis, as follows:[tex]p_{fy} = (m_{A} + m_{B} ) * v_{fy} (4)[/tex]
Since (1) is equal to (3), replacing for the givens, and since p₀Bₓ = 0, we can solve for vfₓ as follows:[tex]v_{fx} = \frac{p_{oAx}}{(m_{A}+ m_{B)}} = \frac{m_{A}*v_{oAx} }{(m_{A}+ m_{B)}} =\frac{17.0kg*8.00m/s}{46.0kg} = 2.96 m/s (5)[/tex]
In the same way, we can find the component of the final momentum along the y-axis, as follows:[tex]v_{fy} = \frac{p_{oBy}}{(m_{A}+ m_{B)}} = \frac{m_{B}*v_{oBy} }{(m_{A}+ m_{B)}} =\frac{29.0kg*5.00m/s}{46.0kg} = 3.15 m/s (6)[/tex]
With the values of vfx and vfy, we can find the magnitude of the final speed of the two-object system, applying the Pythagorean Theorem, as follows:[tex]v_{f} = \sqrt{v_{fx} ^{2} + v_{fy} ^{2}} = \sqrt{(2.96m/s)^{2} + (3.15m/s)^{2}} = 4.32 m/s (7)[/tex]
The magnitude of the final total momentum is just the product of the combined mass of both objects times the magnitude of the final speed:[tex]p_{f} = (m_{A} + m_{B})* v_{f} = 46 kg * 4.32 m/s = 198.8 kg*m/s (8)[/tex]
Finally, the angle that the final momentum vector makes with the positive x-axis, is the same that the final velocity vector makes with it.We can find this angle applying the definition of tangent of an angle, as follows:[tex]tg \theta = \frac{v_{fy}}{v_{fx}} = \frac{3.15 m/s}{2.96m/s} = 1.06 (9)[/tex]
⇒ θ = tg⁻¹ (1.06) = 46.8º N of E
The part of the eye that gives its shape is the:
Velocity tells us not only how fast something is going, but in what direction it is traveling.
True
False
Answer:
true
Explanation:
because I tride it
ANSWER SOON
3. Let's say we have 3 kg of iron at 100 C, and it touches a 15kg iron at 20 C. Explain what is going to happen in detail in terms of internal energy, temperature, and heat. (you can explain it with just words)
Answer:
one of the mjor effects of heat transfer is temperature change
Explanation:
simple answer
An elevator filled with passengers has a mass of 1663 kg. (a) The elevator accelerates upward from rest at a rate of 1.20 m/s2 for 3.25 s. Calculate the tension in the cable (in N) supporting the elevator. 18317 Correct: Your answer is correct. N (b) The elevator continues upward at constant velocity for 8.92 s. What is the tension in the cable (in N) during this time
Answer:
(a) T = 18309.63 N = 18.31 KN
(b) T = 16314.03 N = 16.314 KN
Explanation:
(a)
The tension in an elevator while moving upward with some acceleration is given by the following formula:
[tex]T = m(g+a)\\[/tex]
where,
T = Tension = ?
m = mass = 1663 kg
g = acceleration due to gravity = 9.81 m/s²
a = acceleration of elevator = 1.2 m/s²
Therefore,
[tex]T = (1663\ kg)(9.81\ m/s^2 + 1.2\ m/s^2)\\[/tex]
T = 18309.63 N = 18.31 KN
(b)
Constant velocity means no acceleration. So, in that case, the tension will be equal to the weight of the elevator:
[tex]T = mg\\T = (1663\ kg)(9.81\ m/s^2)\\[/tex]
T = 16314.03 N = 16.314 KN
a system of 11 protons and 15 neutrons has a net charge of
A box with mass 1.10 kg is located on a horizontal tabletop with friction. The coefficient of kinetic friction is 0.500. The tabletop is square and measures 1.00 m on its side. The box starts at one corner and finishes at the diagonal edge. The path it follows is by first traveling one edge, turning and traveling to the final location. You push the box by exerting a force on it that makes an angle of 30.0o with the horizontal. How much work does the friction force do
Answer:
W = 6.5 W
Explanation:
Work is defined by
W = F . d
W = f d cos tea
where the point represents the scaled product and the bold letters indicate vectors
they ask us the work of the friction force
we write the translational equilibrium equation
y Axis
N -W = 0
N = mg
x axis
F - fr = 0
F = fr
the formula for the friction force is
fr = μ N
we substitute
fr = μ m g
we substitute in the equation of work
W = fr d cos θ
W = μ m g d cos θ
let's calculate
W = 0.500 1.10 9.8 Σ d_i cos θ_i
W = 5.39 d cos tea
we have two displacement
the first on one side of the box, suppose that side is on the y-axis, therefore the angle between the displacement and the friction force is 70º
and there is a second displacement in the x axis, in this case the angle between the friction force and the displacement is 30º
therefore the total workload is the sum of those work
W = 5.39 (1 cos 70 + 1 cos 30)
W = 5.39 (0.342 + 0.866)
W = 6.5 W
Help please, i am lost.
Answer:
nas wr hdrtuendnetyje because
Explanation:
When two positive charges are brought close together, what happens to the
field lines of the charges?
Answer:
they will move away from each other
A long, straight, current-carrying wire runs from north to south.
a. A compass needle placed above the wire points with its north pole toward the east. In What direction is the current flowing
b. If a compass is put underneath the wire, in which direction will the compass needle point?
Answer:
a. The current is flowing from South to North. So, the current flows in the North direction
b. West
Explanation:
a. A compass needle placed above the wire points with its north pole toward the east. In What direction is the current flowing?
Using Maxwell's corkscrew rule, with the thumb of the right hand pointing in the direction of the current and the closed fingers pointing in the direction of the magnetic field.
Since the compass is placed above the wire and points east, the direction of the magnetic field at that point is east.
Since the magnetic field is tangential to the circular path around the wire, to produce an eastward magnetic field above the wire, the current must go from South to North. So, the current flows in the North direction.
b. If a compass is put underneath the wire, in which direction will the compass needle point?
If the compass is put underneath the wire, using Maxwell's corkscrew rule, since the current points northward, and the magnetic field is tangential to the circular path around the wire, the magnetic field below the wire points west.
So, the direction of the compass needle when the compass is put beneath the wire is west.
A 65.0 kg skier slides down a 37.20 slope with mu = 0.107.
What is the friction force?
Answer:
54.3N
Explanation:
The normal force is perpendicular to the slope, so:
Normal Force = cos(37.2)(9.8*65).......507.39N
F(friction)=mu*F(normal)
F(friction)=(0.107)(507.39)
F(friction)=54.3N
Answer:
magnitude of friction force- 54.3
friction force- -54.2
Explanation:
The surface of the sun has a temperature of about 5,800 Kelvin. What is the average kinetic energy of particles on the surface of the sun? Please show your work
Answer:
273.15
Explanation:
So that's three over two times 1.38 times ten to the minus twenty-three joules per Kelvin, times 5500 degrees Celsius, the surface of the sun converted into Kelvin by adding 273.15. This works out to 1.20 times ten to the minus nineteen joules. So that's the average kinetic energy of hydrogen atoms.
ASAP
If a cart is released with some initial
velocity, it will slowly come to a stop.
What happens to the energy of the cart's
motion?
If the cart is pulled along at a constant velocity, no acceleration, the energy of the carts motion is constant but the force pulling it adds energy continuously. Where does the extra energy go?
Answer:
A) Energy is dissipated into heat and sound energy due to Friction
B) The energy goes into heat and sound energy due to friction again, otherwise the cart would accelerate due to an unbalanced force. Therefore, we know there's friction, and the friction causes energy loss.
Which of the following would require the greatest number of calories?
a. heating 1 g of water from 10°C to 80°C
b. heating 10 g of water from 10°C to 40°C
c. heating 100 g of water from 10°C to 20°C
d. heating 1000 g of water from 10°C to 12°C
Answer:
D
Explanation:
You are boiling more grams for more time because the more water the longer it takes which requires more calories to burn it.
Which statement about homeostasis is most accurate? *
1:Homeostasis is the ability of the body to change to match the surrounding environment.
Homeostasis is the ability of the body to maintain balance inside the cells, even as the surrounding environment changes
Homeostasis is the ability to fight disease.
Answer:
Homeostasis is the ability of the body to maintain balance inside the cells, even as the surrounding environment changes
The correct option is (1)Homeostasis is the ability of the body to change to match the surrounding environment.
What is Homeostasis?
Homeostasis is the ability of an organism or system to maintain a stable internal environment, despite changes in external conditions. This is achieved through a variety of physiological and behavioral mechanisms that help regulate various bodily functions such as temperature, blood sugar levels, hydration, and oxygen levels.
The process of homeostasis involves the detection of changes in the internal or external environment, followed by a response that helps restore the optimal conditions. For example, if the body's temperature rises above normal levels, the brain triggers sweat production to cool down the body.
Homeostasis is essential for the proper functioning of cells, tissues, organs, and the entire organism. It helps maintain a balance between various bodily functions and ensures that cells have the necessary conditions to carry out their functions. Without homeostasis, cells would be unable to survive and carry out the functions required for life.
Hence the correct statement about homeostasis is, Homeostasis is the ability of the body to change to match the surrounding environment.
To learn more about Homeostasis click:
https://brainly.com/question/3888340
#SPJ3
A student plans to determine the resistivity of a specific type of metal. To do this, the student will use wires constructed of the metal with known dimensions that are connected to a variable power source. The potential difference across and the current through each wire are measured and the resistance of each is calculated. The resistance is used to determine the resistivity. Which of the following should be kept constant to ensure that the resistivity values are consistent, and why?
a. The potential difference across the wires, because then only the currents will be different.
b. The currents in the wires, because then only the resistances will be different.
c. The lengths of the wires, because the resistivity changes with length.
d. The temperature of the wires, because resistivity changes with temperature.
Answer:
reviewing the different answers, the correct one is d
Explanation:
In the experiment to determine the resistivity of the wires, the student should use the relationship
R = ρ L / A
ρ = R A/L
in the statement they indicate that the difference that potential and current are measured, calculating the resistances from Ohm's law
V = i R
R = V / i
As resistivity is a property of the material that depends on the temperature, great care must be taken that the resistors do not change the temperature during the experiment, as this alters the resistivity value.
When reviewing the different answers, the correct one is d
A tank is is half full of oil that has a density of 900 kg/m3. Find the work W required to pump the oil out of the spout. (Use 9.8 m/s2 for g. Assume r = 15 m and h = 5 m.) W = 1.59 J
Answer:
3.9 × 10^7 J
Explanation:
Given that a tank is is half full of oil that has a density of 900 kg/m3. Find the work W required to pump the oil out of the spout. (Use 9.8 m/s2 for g. Assume r = 15 m and h = 5 m.) W = 1.59 J
Solution
Since the tank is half full, the height = 2.5m
Pressure = density × gravity × height
Pressure = 900 × 9.8 × 2.5
Pressure = 22050 Pascal
The cross sectional area of the pump will be area of a circle.
A = πr^2
A = π × 15^2
A = 706.858 m^2
Using the formula
Density = mass/volume
Mass = density × volume
Mass = 900 × 706.86 × 2.5
Mass = 1590.435
Energy = mgh
Energy = 1590.435 × 9.8 × 2.5
Energy = 38965657.8 J
Since the work done = energy
Therefore, the work done = 3.9 × 10^7 J
A physics student sits in a chair. The chair pushes up on the student's body. Identify the other force of the interaction force pair.
Answer:
The other force is the weight of the student.
Explanation:
With respect to Newton's third law of motion, for the student to sit and balance on the chair, there must be two equal and opposite forces involved. The student applies his/ her weight on the chair which acts downwards, while the chair applies an equal but opposite force to the weight of the student.
The force applied by the chair on the student's body is counter balanced by the student's weight. Note that, if the weight of the student is greater than the opposing force from the chair, the chair would collapse.
1. Odysseus traveled from Troy to Ithaca. What
was the acceleration of Odysseus' ship if its mass
was 900,000 kg and it moves across the water with
a force of 300,000 N?
Answer: 0.33 m/s^2
Explanation:
The acceleration of Odysseus' ship as it moves across the water from Troy to Ithaca is 0.33m/s²
Given the data in the question;
Mass of Odysseus' ship; [tex]m= 900000kg[/tex]Force with which Odysseus' ship moves across the water; [tex]F = 300000N[/tex]Acceleration; [tex]a = ?[/tex]To determine the acceleration of the ship, We the equation from Newton's Second Law of Motion:
[tex]F = m\ *\ a[/tex]
Where F is the force, m is the mass and a is the acceleration
Lets make acceleration ''a'', the subject of the formula
[tex]a = \frac{F}{m}[/tex]
Now, we substitute our given values into the equation
[tex]a = \frac{300000N}{900000kg}[/tex]
We know that, A newton is defined as [tex]1 kg.m/s^2[/tex]
[tex]a = \frac{300000 kg.m/s^2}{900000kg} \\\\a = 0.33m/s^2[/tex]
Therefore, the acceleration of Odysseus' ship as it moves across the water from Troy to Ithaca is 0.33m/s²
Learn more, https://brainly.com/question/2842540
He-Ne Laser device emits photons of wave length 632.8 nm by rate 4.5 x 1020 photon/s, so
the power of the laser beam =
a. 3.14 W
b. 141.3 W
c. 314.1 w
d. 431.4 W
Answer: Option b.
Explanation:
We know:
Wavelength = 632.8 nm
Fluence = 4.5*10^20 photon/s
The energy of a single photon of wavelength λ is:
E = (h*c)/λ
where:
h = 6.6*10^(-34) J*s
c = 3*10^8 m/s
And we should rewrite the wave length in meters, so:
λ = 632.8 nm = 632.8*10^(-9) m
replacing these in the energy equation, we get:
E = (6.6*10^(-34)J*s)*(3*10^8 m/s)/(632.8*10^(-9) m) = 3.13*10^(-19) J
So each one of the 4.5x10^20 photon that flow each second have this energy, then the power is:
P = (3.13*10^(-19) J)*(4.5*10^20 /s) = 140.85 J/s
and 1 W = 140.85 J/S
Then the power is:
P = 140.85 W
Then the correct answer is the option b, where the units are a little bit different than mine because I used really simplified values for c and h.
How does the amplitude of the wave change as you get farther from the speaker?
Answer:
The sound is perceived as louder if the amplitude increases, and softer if the amplitude decreases. ... As the amplitude of the sound wave increases, the intensity of the sound increases. Sounds with higher intensities are perceived to be louder.
What is the terminal velocity of blood? A. 8.9 feet/seconds B. 9.8 feet/seconds C. 25.1 feet/second D. 52.1 feet/seconds
Answer:
the answer is c) 25.1 feet/second
Explanation:
because the blood droplets can not increase speed past terminal velocity 100.
The terminal velocity of blood is 25.1 ft/s in air. So, option C is correct.
What is meant by terminal velocity ?Terminal velocity is defined as the maximum velocity to which a freely falling drop can accelerate.
Here,
When a drop of blood is observed, it can be found that due to the effect of gravity, the velocity of the freely falling blood drop increases. So, it moves with increasing velocity, which is due to the influence of acceleration due to gravity. During the free fall of blood drop, there are resistive forces in air that opposes the motion or tries to reduce the velocity of the blood drop. The friction in air affects the freely falling blood drop and the blood drop tends to reduce its velocity and reaches a maximum of velocity after which it cannot accelerate, which is due to the frictional force in air. This maximum velocity is called terminal velocity. The terminal velocity of blood is 25.1 feet/second.
Hence,
The terminal velocity of blood is 25.1 ft/s in air.
To learn more about terminal velocity, click:
https://brainly.com/question/13655133
#SPJ2
4 people are playing a tug of war. Two are pulling on the right side. Two are pulling on the left side. On the right side, one is pulling with a force of 60 N and the other with a force of 70 N. On the left side, one is pulling with a force of 30 N. How much force should the second person on the left apply to keep the rope in equilibrium? HINT: The rope will be in equilibrium if the net force is 0.
Answer:
100
Explanation:
since the two at the left side is pulling with a force of 70 and 60 which equals to 130 for the rope to be in equilibrium, those at the left must also pull with same force. Which makes it 130-30=100N
Your teacher then challenges you to use the items in the envelope to create a model of a carbon-14 atom. Before you begin, you and your
group brainstorm ideas for creating your model. Your group suggests the following steps:
Step
Procedure
1
use 6 red circles for the nucleus of the atom
2
use 14 red circles for the nucleus of the atom
3
add 6 blue circles to the nucleus of the atom
4
add 8 blue circles to the nucleus of the atom
5
place 14 yellow circles around the nucleus of the atom
6
place 6 yellow circles around the nucleus of the atom
Exhibits
Which of the following steps should you follow to create a correct model of a Carbon-14 atom?
O A. steps 1,4,6
O B. steps 1, 3,5
o c. steps 2, 3, 6
O D. steps 2,4,5
O
08:11
Answer:
Look it up
Explanation:
We need to use 6 red circles as well as 8 blue circles to represent the 6 protons and 8 neutrons in the nucleus, after which we need to place 6 yellow circles around the nucleus to represent the 6 electrons in the atom. is required. Thus, the correct option is A.
How to create a Carbon-14 atom?To make an accurate model of a carbon-14 atom, we need to follow the steps that represent the correct number of protons, neutrons, and electrons in a carbon-14 atom.
Carbon-14 has 6 protons and 8 neutrons, so we will use a total of 6 red and 8 blue circles around the nucleus which also has 6 electrons, so we need to put 6 yellow circles around the nucleus.
The correct steps to follow to create a model of a Carbon-14 atom are:
Step 1: Use 6 red circles for the nucleus of the atom
Step 4: Add 8 blue circles to the nucleus of the atom
Step 6: Place 6 yellow circles around the nucleus of the atom
Thus, the correct option is A.
Learn more about Carbon-14 atom, here:
brainly.com/question/30727793
#SPJ2
PLEASE CLICK ON THIS IMAGE I NEED HELP
Answer:
rocks are vertical.
Explanation:
I'm so sorry if I'm wrong this is what I think
A friend pushes a sled across horizontal snow and when it gets up to speed the friend jumps on. After the friend jumps on, the sled gradually slows down. Which forces act on the combined sled plus friend after the friend jumps on
Answer:
v’ =( [tex]\frac{1}{1+ \frac{M}{m} }[/tex] ) v
we see that the greater the difference, the more the sled slows down.
friction force
Explanation:
When the man pushes the sled he does work and the sled acquires a speed and as long as it is supplied with an energy equal to the work of the chipping force with the snow, the speed is maintained.
When he jumps on the sled, a collision occurs and the initial moment
p₀ = mv
is increased by the increase in mass
m_f= (m + M_{man} ) v '
In this case there is no longer any external force applied and the only external force is friction, which causes the sled to stop, even when it is small, but the significant reduction in speed is due to the increase in masses.
p₀ = p_f
mv = (m + M_{man}) v '
v ’= [tex]\frac{m}{m+M}[/tex] v
v’ =( [tex]\frac{1}{1+ \frac{M}{m} }[/tex] ) v
Therefore, we see that the greater the difference, the more the sled slows down.
The only forces that act on the sled with the man are the friction that is responsible for the decrease in speed and weight with the normal
4. A train starts its journey and accelerates at 5 ms 2. How long does it take for it to reach a velocity of 100 ms??
Answer:
20 seconds
Explanation:
Joe has a mass of 110 kg. If Joe has to climb a 10 m ladder to get to the top of a chimney, how much work did do?
3)
An eagle carries a 330g snake to a height of 250 m.
What is the potential energy of the snake after the eagle carries it away?
-)))
A)
1,050,00)
B)
10,000
©
80.850)
D)
808.5)
Answer:
b
Explanation:
Answer:
The table shows the height y (in thousands of feet) of an unmanned aerial vehicle (UAV) x minutes after it begins its descent from cruising altitude. Minutes, x Height (thousands of feet), y 0,62 5,58 10,54 15,50
How do you label a bar graph of work compared with power?
Answer:
You must label the horizontal axis with the names of the airlines and the vertical axis with the number of flights. The title must clearly state what data the bar chart is showing. With larger numbers, your scale may not go up by one.
Answer:
You must label the horizontal axis with the names of the airlines and the vertical axis with the number of flights. The title must clearly state what data the bar chart is showing. With larger numbers, your scale may not go up by one.
Explanation:
can you help me please? https://brainly.com/question/22653337
What is the hottest planet in the milky way galaxy
Answer:
Venus
Explanation: