Please help me with this question! I am stuck!

Please Help Me With This Question! I Am Stuck!

Answers

Answer 1

Answer: 2/5

Step-by-step explanation:

there's 5 parts and 2 of them are even therefore 2 out of 5 chances are them being even

Answer 2

Answer: 1/10

Step-by-step explanation:

The probability of spinning any one number on the spinner is 1/5, and the probability of flipping heads or tails on the coin is 1/2. To find the probability of spinning a number AND flipping heads, you would multiply the probabilities: (1/5) x (1/2)=1/10. So the probability of the compound even is 1/10.

Hope this helps


Related Questions

The cones below are similar. Work out the radius, r, of the larger cone.

Answers

The radius, r, of the larger cone is equal to 24 mm.

How to calculate the volume of a cone?

In Mathematics and Geometry, the volume of a cone can be calculated by using this formula:

Volume of cone, V = 1/3 × πr²h

Where:

V represent the volume of a cone.h represents the height.r represents the radius.

Since both the large and small cones are similar, we can logically deduce the following proportion based on their side lengths;

19,008/704 = (r/8)³

19,008/704 = r³/512

r³ = 19,008/704 × 512

Radius of larger cone = 24 mm.

Read more on cone here: https://brainly.com/question/27604827

#SPJ1

Missing information:

The question is incomplete and the complete question is shown in the attached picture.

f(x) = 8 1 − x6 f(x) = [infinity] n = 0 determine the interval of convergence. (enter your answer using interval notation.)

Answers

Answer:

The interval of convergence is (-∞, ∞).

Step-by-step explanation:

Using the ratio test, we have:

| [tex]\frac{1 - x^6)}{(1 - (x+1)^6)}[/tex] | = | [tex]\frac{(1 - x^6) }{(-6x^5 - 15x^4 - 20x^3 - 15x^2 - 6x) }[/tex] |

Taking the limit as x approaches infinity, we get:

lim | [tex]\frac{(1 - x^6) }{(-6x^5 - 15x^4 - 20x^3 - 15x^2 - 6x) }[/tex] | = lim | [tex]\frac{(1/x^6 - 1)}{(-6 - 15/x - 20/x^2 - 15/x^3 - 6/x^4)}[/tex] |

Since all the terms with negative powers of x approach zero as x approaches infinity, we can simplify this to:

lim | [tex]\frac{(1/x^6 - 1) }{(-6)}[/tex] | = [tex]\frac{1}{6}[/tex]

Since the limit is less than 1, the series converges for all x, and the interval of convergence is (-∞, ∞).

To know more about convergence refer here

https://brainly.com/question/31756849#

#SPJ11

A farmer had 4/5 as many chickens as ducks. After she sold 46 ducks, another 14 ducks swam away, leaving her with 5/8 as many ducks as chickens. How many ducks did she have left?

Answers

Let's assume the number of ducks the farmer initially had as 'd' and the number of chickens as 'c'.

Given:

The farmer had 4/5 as many chickens as ducks, so c = (4/5)d.

After selling 46 ducks, the number of ducks becomes d - 46.

After 14 ducks swam away, the number of ducks becomes (d - 46) - 14.

The farmer was left with 5/8 as many ducks as chickens, so (d - 46 - 14) = (5/8)c.

Now we can substitute the value of c from the first equation into the second equation:

(d - 46 - 14) = (5/8)(4/5)d.

Simplifying the equation:

(d - 60) = (4/8)d,

d - 60 = 1/2d.

Bringing like terms to one side:

d - 1/2d = 60,

1/2d = 60.

Multiplying both sides by 2 to solve for d:

d = 120.

Therefore, the farmer initially had 120 ducks.

After selling 46 ducks, the number of ducks left is 120 - 46 = 74.

After 14 more ducks swam away, the final number of ducks left is 74 - 14 = 60.

So, the farmer is left with 60 ducks.

Learn more about linear equation here:

https://brainly.com/question/2030026

#SPJ11

In a given hypothesis test, the null hypothesis can be rejected at the 0.10 and the 0.05 level of significance, but cannot be rejected at the 0.01 level. The most accurate statement about the p- value for this test is: A. p-value = 0.01 B. 0.01 < p-value < 0.05 C. 0.05 value < 0.10 D. p-value = 0.10

Answers

Option B is correct. The most accurate statement about the p-value for this test is: B. 0.01 < p-value < 0.05.

How to interpret the p-value?

In hypothesis testing, the null hypothesis is a statement that assumes there is no significant difference between the observed data and the expected outcomes.

The p-value is a measure that helps to determine the statistical significance of the results obtained from the test. When the null hypothesis can be rejected at the 0.10 and 0.05 levels of significance, but not at the 0.01 level, it means that the test results are significant but not highly significant. In this case, the p-value must be greater than 0.01 but less than 0.05.

Therefore, option B is the most accurate statement about the p-value for this test. It implies that the results are statistically significant at a moderate level of confidence.

Learn more about hypothesis testing

brainly.com/question/30588452

#SPJ11

The number of farms in Iowa can be modeled by N(t) = 110,000(0.987)^t , where t is the number of years since 1980.

1. Using the given equation, how many farms will be in Iowa in 2000? ____

2. Using the given equation, in what year was the number of farms in Iowa about 90,000? ____

Answers

1. Using the given equation, the farms in Iowa in 2000 are 84,671.2046. 2. Using the same equation, the number is Iowa will be about 90,000 in 16 years.

a) We know that N(t) = 110,000(0.987[tex])^{t}[/tex] .

Now the number of years from 1980 to 2000 = 2000 - 1980

= 20 years

N(20) = 110,000 × (0.987[tex])^{20}[/tex]

N(20) = 110,000 × 0.7697382238421814

N(20) = 84,671.2046

So, the number of farms in Iowa in 2000 is 84,671.2046.

b) Now, we have to calculate in which year the number of farms will be 90,000. From the above answer it can be seen that it is definitely before 2000 because the farms are decreasing with increasing year. We will apply the same equation to find the year.

N (t) = 110,000 × (0.987[tex])^{t}[/tex]

90,000 = 110,000 × (0.987[tex])^{t}[/tex]

90,000 / 110,000 = (0.987[tex])^{t}[/tex]

9 / 11 = (0.987[tex])^{t}[/tex]

(0.818) = (0.987[tex])^{t}[/tex]

It can be written as:

(0.987[tex])^{16}[/tex] = (0.987[tex])^{t}[/tex]

So, the value of t is 16.

To know more about equation:

https://brainly.com/question/1529522

#SPJ1

Polonium-210 has a half-life of 140 days. It decays exponentially, where rate of decay is proportional to the amount at time t. If we start with 200mg, how much will remain after 12 weeks?

Answers

Polonium-210 is a radioactive element that decays exponentially. Its half-life is 140 days, which means that after 140 days, the amount of Polonium-210 will be reduced by half. The rate of decay is proportional to the amount at time t, which means that the more Polonium-210 there is, the faster it will decay.


Now, if we start with 200mg of Polonium-210, we can calculate how much will remain after 12 weeks. To do this, we need to convert 12 weeks into days, since the half-life of Polonium-210 is measured in days.
12 weeks is equal to 84 days (12 x 7 = 84), so we need to find out how many half-lives occur in this time period.
84 days divided by 140 days (the half-life of Polonium-210) gives us approximately 0.6 half-lives.
To calculate how much Polonium-210 remains after 0.6 half-lives, we can use the formula:
Amount remaining = initial amount x (1/2)^(number of half-lives)
Plugging in the values, we get:
Amount remaining = 200mg x (1/2)^(0.6)
Amount remaining = 111.3mg
Therefore, after 12 weeks, approximately 111.3mg of Polonium-210 will remain out of the initial 200mg.

Learn more about Polonium here

https://brainly.com/question/7191204

#SPJ11

use the alternating series test, if applicable, to determine the convergence or divergence of the series. [infinity] n = 7 (−1)nn n − 6

Answers

To apply the Alternating Series Test, we need to check two conditions:

The terms of the series must alternate in sign.

The absolute values of the terms must decrease as n increases.

Let's analyze the given series: ∑ (-1)^n (n - 6) from n = 7 to infinity.

Alternating Signs: The series has alternating signs because of the (-1)^n term. When n is even, (-1)^n becomes positive, and when n is odd, (-1)^n becomes negative.

Decreasing Absolute Values: Let's examine the absolute values of the terms: |(-1)^n (n - 6)| = |n - 6|.

As n increases, the absolute value |n - 6| also increases. Therefore, the absolute values of the terms do not decrease.

Since the terms do not meet the decreasing absolute values condition, we cannot conclude convergence or divergence using the Alternating Series Test. The Alternating Series Test does not apply in this case.

To determine the convergence or divergence of the series, we need to use other convergence tests, such as the Ratio Test or the Comparison Test.

Learn more about divergence here: brainly.com/question/32386596

#SPJ11

.Let Y1 ∼ Poi(λ1) and Y2 ∼ Poi(λ2). Assume Y1 and Y2 are independent and let U = Y1 + Y2.
a) Find the mgf of U.
b) Identify the "named distribution" of U and specify the value(s) of its parameter(s)
c) Find the pmf of (Y1|U = u), where u is a nonnegative integer. Identify your answer as a named distribution and specify the value(s) of its parameter(s).

Answers

a) The moment generating function[tex](mgf)[/tex] of U is M(t) = exp((λ1+λ2)(e^t-1)) b) U follows a named distribution known as Poisson distribution with parameter λ1+λ2. c) The [tex]pmf[/tex]of (Y1|U = u) is a binomial distribution with parameters u and λ1/(λ1+λ2).

a) The[tex]mgf[/tex]of U can be found using the fact that the [tex]mgf[/tex]of the sum of independent random variables is the product of their individual [tex]mgfs[/tex]. Thus,

M(t) = E[tex][e^(tU)][/tex] = E[e^(t(Y1+Y2))] = E[e^(tY1)]E[e^(tY2)] = exp(λ1(e^t-1))[tex]exp(λ2(e^t-1)) = exp((λ1+λ2)).[/tex]

b) The sum of independent Poisson random variables is a Poisson distribution with parameter equal to the sum of the individual parameters. Therefore, U follows a Poisson distribution with parameter λ1+λ2.

c) To find the[tex]pmf[/tex]of (Y1|U = u), we use Bayes' theorem:

P(Y1=[tex]k|U=u) = P(Y1=k, Y2=u-k)/P(U=u)[/tex]

= [tex]P(Y1=k)P(Y2=u-k)/(λ1+λ2)^u e^-(λ1+λ2)\\= (λ1^k/k!)(λ2^(u-k)/(u-k)!) / (λ1+λ2)^u e^-(λ1+λ2)[/tex]

This simplifies to a binomial distribution with parameters u and p=λ1/(λ1+λ2), as the probability of success (i.e., Y1=k) is p and the number of trials is u. Thus, the [tex]pmf[/tex] of (Y1|U = u) is a binomial distribution with parameters u and λ1/(λ1+λ2).

Learn more about binomial distribution here:

https://brainly.com/question/29137961

#SPJ11

-2+-6 in absolute value minus -2- -6 in absolute value

Answers

`-2+-6` in absolute value minus `-2--6` in absolute value is equal to `4`.

To solve for `-2+(-6)` in absolute value and `-2-(-6)` in absolute value and subtract them, we first evaluate the two values of the absolute value and perform the subtraction afterwards.

Here is the solution:

Simplify `-2 + (-6) = -8`.

Evaluate the absolute value of `-8`. This gives us: `|-8| = 8`.

Therefore, `-2+(-6)` in absolute value is equal to `8`.

Next, simplify `-2 - (-6) = 4`.

Evaluate the absolute value of `4`.

This gives us: `|4| = 4`.

Therefore, `-2-(-6)` in absolute value is equal to `4`.

Now, we subtract `8` and `4`. This gives us: `8 - 4 = 4`.

Therefore, `-2+-6` in absolute value minus `-2--6` in absolute value is equal to `4`.

To know more about absolute value minus visit:

https://brainly.com/question/31140452

#SPJ11

Consider the following. {(0, −1, 4), (−1, 4, 1), (−17, −4,−1)} (a) Determine whether the set of vectors in Rn is orthogonal. orthogonal not orthogonal (b) If the set is orthogonal, then determine whether it is also orthonormal. orthonormal not orthonormal not orthogonal (c) Determine whether the set is a basis for Rn. a basis not a basis

Answers

a. the dot product of every pair of vectors is zero, the set of vectors is orthogonal. b. the set is not orthonormal. c. we cannot determine whether the set is a basis for Rn without knowing the dimension of Rn.

(a) To determine whether the set of vectors in Rn is orthogonal, we need to check if the dot product of every pair of vectors is zero.

Taking dot products:

(0, -1, 4) • (-1, 4, 1) = 0 + (-4) + 4 = 0

(0, -1, 4) • (-17, -4, -1) = 0 + 4 + (-4) = 0

(-1, 4, 1) • (-17, -4, -1) = 17 + (-16) + (-1) = 0

Since the dot product of every pair of vectors is zero, the set of vectors is orthogonal.

(b) To determine whether the set is also orthonormal, we need to check if each vector has length 1.

Calculating the length of each vector:

|| (0, -1, 4) || = sqrt(0^2 + (-1)^2 + 4^2) = sqrt(17)

|| (-1, 4, 1) || = sqrt((-1)^2 + 4^2 + 1^2) = sqrt(18)

|| (-17, -4, -1) || = sqrt((-17)^2 + (-4)^2 + (-1)^2) = sqrt(292)

Since none of the vectors have length 1, the set is not orthonormal.

(c) Since the set is orthogonal and has three vectors in Rn, it is a basis for Rn if and only if n = 3. Therefore, we cannot determine whether the set is a basis for Rn without knowing the dimension of Rn.

Learn more about orthogonal here

https://brainly.com/question/30772550

#SPJ11

The curve of the equation y^2 = x^2(x 3) find the area of the enclosed loop.

Answers

The area of the enclosed loop of the curve y^2 = x^2(x 3) is 56√3/15.

To find the area of the enclosed loop of the curve y^2 = x^2(x 3), we need to first sketch the curve to see what it looks like. The equation can be rewritten as y^2 = x^2(x-3), which means that the curve is symmetric about the x-axis and passes through the origin.

Next, we can find the x-intercepts of the curve by setting y=0: 0^2 = x^2(x-3), which simplifies to x=0 and x=3. So the curve intersects the x-axis at (0,0) and (3,0).

To find the area of the enclosed loop, we need to integrate the curve from x=0 to x=3 and subtract the area below the x-axis. We can do this by setting up the integral as follows:

A = ∫[0,3] y dx - ∫[0,3] -y dx

We can solve for y by taking the square root of both sides of the equation y^2 = x^2(x-3):

y = ± x√(x-3)

To find the bounds of the integral, we can set the two functions equal to each other and solve for x:

x√(x-3) = -x√(x-3)
x=0 or x=3

So our integral becomes:

A = ∫[0,3] x√(x-3) dx - ∫[0,3] -x√(x-3) dx

We can simplify the integral by making the substitution u = x-3, which gives us:

A = ∫[0,3] (u+3)√u du - ∫[0,3] -(u+3)√u du

Simplifying further, we get:

A = 2∫[0,3] (u+3)√u du

This integral can be evaluated using integration by parts, which gives us:

A = 2/3 [2(u+3)(2u+3)√u - ∫(2u+3)√u du] from 0 to 3

Simplifying, we get:

A = 2/3 [(54√3/5) - (2/5)(18√3) + (2/3)(4√3)]

A = 56√3/15 DETAIL ANS

Therefore, the area of the enclosed loop of the curve y^2 = x^2(x 3) is 56√3/15.

Learn more about enclosed loop of the curve

brainly.com/question/30174664

#SPJ11

What is one way that adding and subtracting polynomials is similar to adding and subtracting whole numbers and integers?

Answers

One way that adding and subtracting polynomials is similar to adding and subtracting whole numbers and integers is that both operations follow the same basic rules for combining like terms.

In both cases, you add or subtract the coefficients (numbers) of the same type of term or same variable with the same exponent.

Just like adding and subtracting integers, you also need to consider the signs (+ or -) when combining the terms.

To Know more about polynomials  refer here

https://brainly.com/question/20121808#

#SPJ11

Edgar decided to add a second gate. He removes 2 yards t foot of fencing from his section of 13 yards. How much fencing is left?

Answers

11 yards of fencing left.

Given that Edgar decided to add a second gate. He removes 2 yards of fencing from his section of 13 yards.

Therefore, the total length of the fencing was 13 yards.We have to remove 2 yards of fencing from the section.Therefore, the total fencing remaining will be=

Total fencing - Fencing Removed Fencing Removed = 2 yardsTotal fencing = 13 yards We can substitute the values in the above equation.Fencing remaining= 13 - 2 = 11 yards  In total, 11 yards of fencing are left.

Edgar had 13 yards of fencing. He had to remove 2 yards of fencing from it. Thus, he could not use the removed fencing for the gate. We need to calculate the remaining length of the fencing.Edgar had to remove 2 yards of fencing to add a second gate.

Therefore, the total fencing remaining will be= Total fencing - Fencing RemovedFencing Removed = 2 yardsTotal fencing = 13 yardsWe can substitute the values in the above equation.

Fencing remaining= 13 - 2 = 11 yards

Thus, Edgar has only 11 yards of fencing left to use. This will be less fencing available to Edgar to use for his purpose. With a smaller area to work with, Edgar will have to ensure that the fencing is placed appropriately.

Edgar had a total of 13 yards of fencing before removing 2 yards of fencing to add a second gate. Therefore, he had only 11 yards of fencing left.

To know more about length visit:

brainly.com/question/32060888

#SPJ11

use the formula for the sum of a geometric series to find the sum or state that the series diverges (enter div for a divergent series). ∑=3[infinity]710

Answers

The given series ∑=3[infinity]710 is a geometric series with the first term a=3 and the common ratio r=7/10. Therefore, the sum of the given geometric series is 10, and the series is convergent.

To determine whether the series converges or diverges, we can apply the formula for the sum of an infinite geometric series, which is S = a / (1 - r). Plugging in the values for a and r, we get:

S = 3 / (1 - 7/10) = 3 / (3/10) = 10

Therefore, the sum of the infinite geometric series is 10. This means that as we add up more and more terms of the series, the sum gets closer and closer to 10. In other words, the series converges to a finite value of 10.

In conclusion, the sum of the given geometric series is 10, and the series is convergent.

To learn more about “geometric series” refer to the https://brainly.com/question/24643676

#SPJ11

Given Rhombus ABCD, find x, y and z. Then find the perimeter

Answers

The perimeter of the rhombus is 34 units.

Given rhombus ABCD, the figure is represented as:

Rhombus ABCD, x= 7y+3, z= 4y-3

Find the value of y

First, we need to find the value of y. Since, the opposite angles of a rhombus are congruent, so,

∠DAB= ∠DCB

Now, x = 7y+3z = 4y-3

Adding both, x+z= 11y

By solving the above equation, we get,

y= (x+z)/11

On substituting the value of x and z in terms of y, we get,

x= (7(x+z)/11)+3z

= (4(x+z)/11)-3

On substituting x and z values in the given equations,

x= 17y/11+3z= 10y/11-3

Find the perimeter

Perimeter of a rhombus is given by,

Perimeter= 4a, where a is the side of the rhombus.

Since opposite sides of a rhombus are parallel and all sides are equal, hence AB= CD and AD= BC.

So,AB= 17y/11+3, CD= 17y/11+3AD= 10y/11-3, BC= 10y/11-3

On substituting the value of y in the above equations, we get,

AB= 4, CD= 4AD= 13, BC= 13

Therefore,

Perimeter = AB+ CD+ AD+ BC

Perimeter = 4+ 4+ 13+ 13

Perimeter = 34 units.

To know more about perimeter  please visit :

https://brainly.com/question/397857

#SPJ11

A dress pattern calls for 1 1/8 yards of fabric for the top and 2 5/8 yards for the skirt. Mia has 3 1/2 yards of fabric. Does she have enough fabric to make the dress? Explain

Answers

To find out whether Mia has enough fabric to make the dress, you need to add the amount of fabric required for the top and skirt. Then compare it with the amount of fabric she has.

So, let's do that.To make the dress, we need 11/8 yards of fabric for the top2 5/8 yards of fabric for the skirt Total fabric required

= 1 1/8 + 2 5/8

= 3 3/4 yards

Mia has 3 1/2 yards of fabric

So, Mia does not have enough fabric to make the dress because she needs 3 3/4 yards of fabric to make it.

To know more about yards visit :-

https://brainly.com/question/24487155

#SPJ11

Solve: 7(s + 1) + 21 = 2(s - 6) - 20

Answers

7s + 7 +21= 2s -12 -20
7s -2s= -12-20-21-7
5s=-60
S = -12

given the following equation, find the value of y when x=3. y=−2x 15 give just a number as your answer. for example, if you found that y=15, you would enter 15.

Answers

Answer:

Step-by-step explanation:

To find the value of y when x = 3 in the equation y = -2x + 15, we substitute x = 3 into the equation and solve for y:

y = -2(3) + 15

y = -6 + 15

y = 9

Therefore, when x = 3, y = 9.

Estimate the sum of 192 and 91 by rounding both values to the nearest ten. what is the best estimate of the sum?

280

290

300

310

Answers

To estimate the sum of 192 and 91 by rounding both values to the nearest ten, we round 192 to 190 and 91 to 90.

190 + 90 = 280

Therefore, the best estimate of the sum is 280.

Learn more about estimate here:

https://brainly.com/question/30870295

#SPJ11

Using Postulates and/or Theorems learned in Unit 1, determine whether AABC~AAXY.

Show all your work and explain why the triangles are similar or why they are not.

Answers

Therefore, the two triangles are similar. This can be represented as AABC~AAXY.

Given, Two triangles AABC and AAXY

To determine whether AABC is similar to AAXY or not, we have to check whether the corresponding angles of the triangles are equal or not.

Corresponding angles are as follows:

A of ABC is corresponding to A of AAXY, B of ABC is corresponding to X of AAXY and C of ABC is corresponding to Y of AAXY.

According to Angle-Angle Similarity Postulate, if two angles of one triangle are congruent to two angles of another triangle, then the triangles are similar.

According to Angle-Angle Similarity Postulate, if two angles of one triangle are congruent to two angles of another triangle, then the triangles are similar.

Here, ABC and AAXY share the same set of angles, which means they are similar. Hence, AABC is similar to AAXY. So, we can write AABC~AAXY.

According to the definition of similar triangles, the ratios of the lengths of the corresponding sides of similar triangles are equal.

Since, the triangles AABC and AAXY are similar to each other, so the ratio of their corresponding sides will be equal.

AA of AABC and AAXY are in proportion with each other (AA Similarity Postulate):

AB/AX = AC/AY = BC/XY

Triangles are a basic concept of geometry that is fundamental to its study. In this case, we have two triangles AABC and AAXY. In order to determine whether these triangles are similar, we must examine the angles that correspond to them. If two angles of one triangle are congruent to two angles of another triangle, then the triangles are similar.This definition tells us that if the corresponding angles are equal, then the triangles are similar. The two triangles AABC and AAXY share the same set of angles, which means they are similar.

Hence, AABC is similar to AAXY. We can write AABC~AAXY.

To know more about triangle visit:

https://brainly.com/question/2773823

#SPJ11

Find the approximate volume, in cubic centimeters, of the solid shown where h = 12 cm, s = 7 cm, and d = 8 cm. A. 218 cm3 B. 435 cm3 C. 603

Answers

The answer is c have a good day

ONLY ANSWER IF YOU KNOW. What is the probability that either event will occur?

Answers

Answer:

0.67

Step-by-step explanation:

(07. 04 MC)


An observer (O) is located 660 feet from a tree (T). The observer


notices a hawk (H) flying at a 35° angle of elevation from his line of


sight. How high is the hawk flying over the tree? You must show all


work and calculations to receive full credit. (10 points)

Answers

Height of hawk eye at a distance of 660 feet from tree is 462.1 feet .

Given,

An observer (O) is located 660 feet from a tree (T). The observer

notices a hawk (H) flying at a 35° angle of elevation from his line of sight.

Here,

Let x be the height of the hawk.

The tangent ratio expresses the relationship between the sides of a right triangle depicted above as:

tanФ = opposite side/adjacent side

tan35° = x / 660

x = 660 (tan35° )

x = 462.1 feet .

Thus the height of hawk eye is 462.1 feet .

Know more about angle of elevation,

https://brainly.com/question/29008290

#SPJ12

Add


3/5+7/8+3/10

Enter your answer in the box as a mixed number in simplest form.

Answers

The gcf of the denominators is 40, so after making that change to each fraction, the answer is 1 31/40
LCM of 5, 8, and 10 = 40, so

3/5 turns into 24/40
7/8 into 35/40
3/10 into 12/40

24/40 + 35/40 + 12/40 = 71/40

71/40 = 1 31/40

Answer: 1 31/40

Have a good day ^^

What is the probability that either event will occur?

Answers

Answer:

0.67

Step-by-step explanation:

How many decimal strings are there with length at least 4 and at most 7?

Answers

Answer: To find the number of decimal strings of length at least 4 and at most 7, we can count the number of strings of length 4, 5, 6, and 7 and add them together.

Number of strings of length 4: There are 10 possible digits for each of the 4 positions, so there are 10^4 = 10,000 possible strings.

Number of strings of length 5: There are 10 possible digits for each of the 5 positions, so there are 10^5 = 100,000 possible strings.

Number of strings of length 6: There are 10 possible digits for each of the 6 positions, so there are 10^6 = 1,000,000 possible strings.

Number of strings of length 7: There are 10 possible digits for each of the 7 positions, so there are 10^7 = 10,000,000 possible strings.

Therefore, the total number of decimal strings of length at least 4 and at most 7 is:

10,000 + 100,000 + 1,000,000 + 10,000,000 = 11,110,000.

So there are 11,110,000 decimal strings with length at least 4 and at most 7.

To answer your question, we need to first understand what a decimal string is.

A decimal string is a sequence of digits, 0 through 9.

So, for example, 123 and 987654 are both decimal strings.

Now, we need to find how many decimal strings there are with length at least 4 and at most 7. This means that we need to count all the decimal strings that have a length of 4, 5, 6, or 7.

To find the number of decimal strings with length 4, there are 10 options for the first digit, 10 options for the second digit, 10 options for the third digit, and 10 options for the fourth digit. So, there are 10 x 10 x 10 x 10 = 10,000 decimal strings with length 4.

To find the number of decimal strings with length 5, there are also 10 options for each digit, so there are 10 x 10 x 10 x 10 x 10 = 100,000 decimal strings with length 5.

To find the number of decimal strings with length 6, there are again 10 options for each digit, so there are 10 x 10 x 10 x 10 x 10 x 10 = 1,000,000 decimal strings with length 6.

Finally, to find the number of decimal strings with length 7, there are 10 options for each digit, so there are 10 x 10 x 10 x 10 x 10 x 10 x 10 = 10,000,000 decimal strings with length 7.

So, to find the total number of decimal strings with length at least 4 and at most 7, we add up the number of decimal strings with each length:

10,000 + 100,000 + 1,000,000 + 10,000,000 = 11,110,000

Therefore, there are 11,110,000 decimal strings with length at least 4 and at most 7.

To Know more about decimal string refer here

https://brainly.com/question/31841719#

#SPJ11

for an experiment with three conditions with n = 15 each, find q

Answers

Answer:

The number of ways to allocate the total sample size of 45 into three conditions with n = 15 each is q ≈ 1.276 × 10^38

Step-by-step explanation:

o find q, we need to know the number of all possible ways to allocate the total sample size (n = 45) into the three conditions with equal sample sizes (n = 15 each). This is given by the multinomial coefficient:

q = (n choose n1, n2, n3) = (n!)/(n1! * n2! * n3!)

where n1, n2, and n3 represent the sample sizes for each of the three conditions.

Since each condition has the same sample size, we have n1 = n2 = n3 = 15, so:

q = (45!)/(15! * 15! * 15!)

To simplify this expression, we can use the fact that:

n! = n * (n-1) * (n-2) * ... * 2 * 1

Therefore:

45! = 45 * 44 * 43 * ... * 2 * 1

15! = 15 * 14 * 13 * ... * 2 * 1

Substituting these into the expression for q, we get:

q = (45 * 44 * 43 * ... * 2 * 1) / [(15 * 14 * 13 * ... * 2 * 1) * (15 * 14 * 13 * ... * 2 * 1) * (15 * 14 * 13 * ... * 2 * 1)]

Simplifying the denominator, we get:

q = (45 * 44 * 43 * ... * 2 * 1) / (15!)^3

Using a calculator or computer program to evaluate this expression, we get:

q = 1.276 × 10^38

Therefore, the number of ways to allocate the total sample size of 45 into three conditions with n = 15 each is q ≈ 1.276 × 10^38.

To know more about multinomial coefficient refer here

https://brainly.com/question/10787369#

#SPJ11

a. How many integers from 1 through 999 do not have any repeated digits?
b. How many integers from 1 through 999 have at least one repeated digit?
c. What is the probability that an integer chosen at random from 1 through 999 has at least one repeated digit?

Answers

a. There are 648 integers from 1 through 999 that do not have any repeated digits.

b. There are 351 integers from 1 through 999 that have at least one repeated digit.

c. The probability that an integer chosen at random from 1 through 999 has at least one repeated digit is approximately 0.351.

How many integers from 1 through 999 have unique digits?

Learn more about the count of integers without repeated digits from 1 to 999.In a range from 1 through 999, there are 900 integers in total. To determine the number of integers without repeated digits, we need to consider the possible combinations. For the hundreds place, there are 9 options (1-9) since zero cannot be used as the first digit. For the tens place, there are 9 options again (0-9 excluding the digit already used in the hundreds place). Similarly, for the units place, there are 8 options available (0-9 excluding the two digits already used in the hundreds and tens places). Multiplying these options together, we get 9 * 9 * 8 = 648 integers without repeated digits.To calculate the number of integers with at least one repeated digit, we can subtract the count of integers without repeated digits from the total count of integers in the range. Therefore, 900 - 648 = 252 integers have at least one repeated digit.

To find the probability, we divide the count of integers with at least one repeated digit by the total count of integers in the range, resulting in 252 / 900 ≈ 0.351. Therefore, the probability that a randomly chosen integer from 1 through 999 has at least one repeated digit is approximately 0.351.

Among the three-digit integers from 100 to 999, how many of them have at least one digit repeated?

Out of the three-digit integers from 100 to 999, there are 351 integers that have at least one repeated digit. To determine this count, we subtract the number of unique-digit integers (648) from the total count of three-digit integers (900). Hence, 900 - 648 = 252 integers have at least one digit repeated.

If a three-digit integer is selected randomly from the range 100 to 999, what is the probability that it will have at least one repeated digit?

If a three-digit integer is randomly selected from the range 100 to 999, the probability that it will have at least one repeated digit is approximately 0.39 or 39%. This probability is calculated by dividing the count of integers with repeated digits (351) by the total count of three-digit integers (900). Therefore, the probability is 351 / 900 ≈ 0.39 or 39%.

Learn more about combinatorics

brainly.com/question/31293479

#SPJ11

Choose all the fractions whose product is greater than 2 when the fraction is multiplied by 2.

Answers

Answer:

n

Step-by-step explanation:

Find the area of the given triangle. Round your answer to the nearest tenth. Do not round any Intermediate computations. 36° 12 square units​

Answers

The area of the triangle is 52.32 square units

Finding the area of the triangle

from the question, we have the following parameters that can be used in our computation:

The triangle

The base of the triangle is calculated as

base = 12 * tan(36)

The area of the triangle is then calculated as

Area = 1/2 * base * height

Where

height = 12

So, we have

Area = 1/2 * base * height

substitute the known values in the above equation, so, we have the following representation

Area = 1/2 * 12 * tan(36) * 12

Evaluate

Area = 52.32

Hence, the area of the triangle is 52.32 square units

Read more about area at

https://brainly.com/question/24487155

#SPJ1

The area of the right triangle is approximately 52.3 square units.

What is the area of the triangle?

The area of triangle is expressed as:

Area = 1/2 × base × height

The figure in the image is a right triangle.

Angle θ = 36 degrees

Adjacent to angle θ ( height ) = 12

Opposite to angle θ ( base ) = ?

To determine the area, we need to find the opposite side of angle θ which is the base.

Using trigonometric ratio:

tanθ = opposite / adjacent

tan( 36 ) = base / 12

base = 12 × tan( 36 )

base = 8.718510

Now, area will be:

Area = 1/2 × 8.718510 × 12

Area = 52.3 square units

Therefore, the area of the triangle is 52.3 square units.

Learn more about trigonometric ratio here: brainly.com/question/28016662

#SPJ1

Other Questions
If a certain PWM waveform with a 30 % duty cycle has an RMS voltage of Vrms=Vrms= 1 VV, what will be the RMS voltage if the duty cycle changes to 90 %? true/false. paychex provided direct deposit payroll services for ophtalmic surgeons T/F : productions that consist almost entirely of expressive movement, dance, music, and light are referred to as physical theatre. What is the empirical formula of a compound that contains 0.783 g of carbon, 0.196 g of hydrogen, and 0.521 g of oxygen? With both resistance and aerobic training, children exhibit a(n) ______________ in fat mass and a(n) ________________ in fat-free mass.a) decrease, decreaseb) increase, plateauc) decrease, increased) increase, decrease question 1remembering that the latin suffix -tion means "the state or condition of" and the latin root appararemeans "to appear" use the context clues provided in the passage to determine the meaning ofapparition. write your definition of "apparition here and tell how you got it. A resistor is made from a hollow cylinder of length, l, innerradius a, and outer radius b. The region a Each bit operation is completed in 10 9seconds. You have one second to calculate the value of some function f(n) for the largest possible value of n. a) If calculating f(n) takes nlog 2(n) big operations, then the largest value of n for which f(n) could be computed in one second is n=. (Round to the nearest million) b) If calculating f(n) takes n 2big operations, then the largest value of n for which f(n) could be computed in one second is n=. (Round to the nearest thousand) c) If calculating f(n) takes 2 nbit operations, then the largest value of n for which f(n) could be computed in one second is n=. (Round to the nearest whole number) Which of the following best explains the behavior of the guard squirrels? A. The behavior of the guard squirrels increases the survival of close relatives that share the genes of the guard squirrels. B. Guard squirrels typically have recessive alleles, and by sacrificing themselves, they lessen the chance that recessive alleles will get passed on. C. Guard squirrels are typically females who have already reproduced, so they are no longer needed by the group. D. The guard squirrels confuse the predator, lowering the predators success rate because the predator cannot tell determine the volume of so2 (at stp; in liters) formed from the reaction of 96.7 g of fes2 and 55.0 l of o2 (at 398 k and 1.20 atm). find the gss of the following 3 des: 2 = 0 If O is the center of the above circle, H is the midpoint of EG and D is the midpoint of AC, what is the ( Air is compressed in an Otto cycle beginning at 35 C and 0.1 MPa. The maximum temperature of the process is 1100 C and the compression ratio is 7. Find (a) the pressure and temperature at all points of the cycle, (b) the heat that must be supplied to the process per unit mass (kg) of air, the work done per unit mass of air, and (c) the efficiency of the cycle. Write your own MATLAB code to perform an appropriate Finite Difference (FD) approximation for the second derivative at each point in the provided data. Note: You are welcome to use the "lowest order" approximation of the second derivative f"(x). a) "Read in the data from the Excel spreadsheet using a built-in MATLAB com- mand, such as xlsread, readmatrix, or readtable-see docs for more info. b) Write your own MATLAB function to generally perform an FD approximation of the second derivative for an (arbitrary) set of n data points. In doing so, use a central difference formulation whenever possible. c) Call your own FD function and apply it to the given data. Report out/display the results. a particular light photon carries an energy of 3 x 10-19 j. what are the frequency, wavelength, and color of this light? what is the probability that z is between 1.57 and 1.87 If Gestalt is, "The total is greater than the sum of its parts", then what is the word for "The total is less than the sum of its parts?" Thanks if we find that the null hypothesis, h0:j=0h0:j=0, cannot be rejected when testing the contribution of an individual regressor variable to the model, we usually should: Joss doctor has prescribed antipsychotic medication for him. Jos is most likely to be diagnosed as having which of the following disorders? a) Obsessive-compulsive b) Generalized anxiety c) Somatic symptom d) Schizophrenia e) Specific phobia In which of the following situations would a person lose heat by conduction?a. Sitting on cold metal bleachers at a football gameb. Wearing wet clothing in windy weatherc. Breathingd. Going outside without a coat during a cold but calm day